
EXPRESSIVE POWER, SAFETY AND CLOUD IMPLEMENTATION OF

ATTRIBUTE AND RELATIONSHIP BASED

ACCESS CONTROL MODELS

by

TAHMINA AHMED, M.Sc.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

COMMITTEE MEMBERS:
Ravi Sandhu, Ph.D., Chair

Jianwei Niu, Ph.D.
Gregory White, Ph.D.
Weining Zhang, Ph.D.
Ram Krishnan, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
December 2017

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10686276

10686276

2017

Copyright 2017 Tahmina Ahmed
All rights reserved.

DEDICATION

I would like to dedicate this thesis to my mom Mrs. Nigar Ahmed and my dad Dr. Jalal Uddin
Ahmed for their tremendous support, unconditional love and inspiration in every steps of my life.
I also like to dedicate it to my kids Taheem Mustaneer, Taafeef Muntasir and Mysha Tazmeen who
are my infinite source of energy to walk extra miles.

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and profound gratitude to my supervising pro-

fessor Dr. Ravi Sandhu who helped me with his inspiring ideas, critical comments, and constant

encouragement. I learned from him how to challenge my own ideas to build a solid base. I am

thankful to him for his guidance in every professional and personal aspects throughout my doctoral

studies and beyond.

I like to thank Dr. Jaehong Park for his guidance, help and effort to organize my dissertation

proposal.

I also like to thank Dr. Jianwei Niu, Dr. Gregory B. White, Dr. Weining Zhang and Dr. Ram

Krishnan for their valuable comments, time and insight in organizing this dissertation.

I also like to thank Farhan Patwa, for his guidance and encouragement in learning and con-

tributing to OpenStack.

I would like to acknowledge our faculties from the Computer Science department, Suzanne

Tanaka from the ICS, Susan Allen and other staffs from CS department for their support throughout

my doctoral studies. My gratitude also goes to all my friends and colleagues at UTSA- specially

my fellow ICS labmates.

This Doctoral Dissertation was produced in accordance with guidelines which permit the in-
clusion as part of the Doctoral Dissertation the text of an original paper, or papers, submitted for
publication. The Doctoral Dissertation must still conform to all other requirements explained in
the Guide for the Preparation of a Doctoral Dissertation at The University of Texas at San Anto-
nio. It must include a comprehensive abstract, a full introduction and literature review, and a final
overall conclusion. Additional material (procedural and design data as well as descriptions of
equipment) must be provided in sufficient detail to allow a clear and precise judgment to be made
of the importance and originality of the research reported.

iv

It is acceptable for this Doctoral Dissertation to include as chapters authentic copies of pa-
pers already published, provided these meet type size, margin, and legibility requirements. In such
cases, connecting texts, which provide logical bridges between different manuscripts, are manda-
tory. Where the student is not the sole author of a manuscript, the student is required to make an
explicit statement in the introductory material to that manuscript describing the students contribu-
tion to the work and acknowledging the contribution of the other author(s). The signatures of the
Supervising Committee which precede all other material in the Doctoral Dissertation attest to the
accuracy of this statement.

December 2017

v

EXPRESSIVE POWER, SAFETY AND CLOUD IMPLEMENTATION OF

ATTRIBUTE AND RELATIONSHIP BASED

ACCESS CONTROL MODELS

Tahmina Ahmed, Ph.D.
The University of Texas at San Antonio, 2017

Supervising Professor: Ravi Sandhu, Ph.D.

For the last few years Attribute Based Access Control (ABAC) has been emerging as the

next dominant form of access control. According to a 2014 NIST special publication, “ABAC

enables more precise access control model as it can consider numerous attributes in authorization

decision.” ABAC can unify the advantages of the traditional discretionary, mandatory and role-

based access control models by using appropriate attributes, while going beyond the capabilities

of these. ABAC has become recognized as a model expressive enough to define finer-grained and

flexible authorization policies suitable for modern application domains such cloud computing and

Internet of Things. Meanwhile, in recent years, various online social network (OSN) applications

such as Facebook, Twitter and LinkedIn have become widely used. In OSNs, authorization for

users’ access to specific content is typically based on the interpersonal relationships between the

accessing user and content owner. Recently ReBAC has been expanded to cover systems beyond

OSNs. Efforts to combine ReBAC and ABAC have also been published.

This dissertation makes fundamental contributions to our understanding of ABAC and ReBAC

from three perspectives. Firstly, it clarifies and resolves conflicting claims in the literature regard-

ing the expressive power of ABAC and ReBAC. It has been argued, on one hand, that attributes

can encode relationships so ABAC subsumes ReBAC. On the other hand, it has been claimed that

the multilevel or composed relations of ReBAC (such as friend of friend) bring fundamentally new

capabilities. This dissertation develops separate classifications of ABAC and ReBAC models with

respect to salient structural and dynamic properties. It shows the equivalence, dominance or non-

comparability of the expressive power of various model classes in these classifications. The results

vi

of this analysis show that ABAC and ReBAC, when defined with sufficient generality, are equiv-

alent in expressive power. For less general forms of ABAC and ReBAC the relative expressive

power depends strongly on the details of the respective models.

Secondly, this dissertation analyzes the safety and expressive power of an existing ABAC

model, viz. ABACα. ABACα is designed with just sufficient capabilities to configure commonly

used forms of discretionary, mandatory and role-based access control. In particular ABACα re-

stricts attribute values to be from finite fixed domains. The safety analysis of ABACα is shown

to be decidable by providing a reduction from ABACα to safety decidable UCONfinite
preA , which is a

structurally different ABAC model with finite fixed domains. Two enhanced versions of ABACα

are defined. One of these is shown to be equivalent in expressive power to UCONfinite
preA . The other

is shown to have undecidable safety and thus expressive power beyond UCONfinite
preA . The question

of whether ABACα is strictly less expressive than UCONfinite
preA or equivalent to it, is left open.

Finally, the dissertation introduces a novel form of ReBAC model (OOReBAC) considering

object-to-object relationship independent of users to control access of resources. A proof-of-

concept implementation of OOReBAC for multicloud resource sharing using the open source

OpenStack cloud platform and specifically its Swift object storage service is provided.

vii

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vi

List of Tables . xi

List of Figures . xiii

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Summary of Contribution . 3

1.4 Organization of the Dissertation . 3

Chapter 2: Background . 4

2.1 The ABACα Model . 4

2.1.1 The ABACα Formal Model (Review) . 4

2.2 The UCONfinite
preA Model . 9

2.2.1 The UCONfinite
preA Model (Review) . 9

2.3 ReBAC Models . 12

2.3.1 ReBAC for Online Social Networks . 12

2.3.2 ReBAC Beyond Online Social Environment 13

2.4 Expressive Power Comparison Framework . 14

2.5 The Openstack Cloud Platform . 16

2.5.1 Swift Storage Structure . 17

Chapter 3: Comparison of ReBAC and ABAC . 18

3.1 Attribute Types . 18

viii

3.2 ReBAC Classification . 24

3.3 ABAC Classification . 28

3.4 Expressing MultiLevel Relationships With Attributes 31

3.5 Comparison: ABAC vs. ReBAC . 34

3.5.1 Comparison on Dynamics . 35

3.5.2 Comparable Structural Models for ReBAC and ABAC 36

3.5.3 Performance Comparison . 38

3.5.4 Choices Of Models . 39

Chapter 4: Safety and Expressive Power of ABACα and its Enhancements 41

4.1 Safety of ABACα . 41

4.1.1 Reduction from ABACα to UCONfinite
preA 42

4.1.2 Safety of ABACα . 47

4.2 Safety and Expressive Power of a UCONfinite
preA Equivalent ABACα Enhancement . . 52

4.2.1 ABACAM
α Model . 52

4.2.2 Reductions . 56

4.2.3 Safety and Expressive Power . 73

4.3 A Safety Undecidable ABACα Enhancement . 85

4.3.1 Extension of ABACα beyond decidability 85

4.3.2 Turing Machine . 85

4.3.3 Configuration of Turing Machine with ABACMI
α 86

4.3.4 Safety and Expressive Power . 90

Chapter 5: Object-to-Object Relationship Based Access Control 92

5.1 OOReBAC Model . 92

5.1.1 Object-to-Object Relationship-Based Access Control Model Characteristics 92

5.1.2 OOReBAC: Model Definition . 95

5.1.3 OOReBAC:Applications . 97

ix

5.2 Implementation of OOReBAC in Openstack Object Storage Swift 100

5.2.1 Proposed Authorization Service for Swift 101

Chapter 6: Conclusion . 105

6.1 Summary of Contributions . 105

6.2 Future Work . 105

Bibliography . 107

Vita

x

LIST OF TABLES

Table 2.1 ABACα Formal Model . 6

Table 2.2 Definition of CPL . 7

Table 2.3 Definition of Languages for ABACα . 8

Table 2.4 Functional Specification of ABACα Operations 8

Table 2.5 UCONfinite
preA Command Structure . 12

Table 4.1 Reduction from ABACα to UCONfinite
preA 45

Table 4.2 UCONfinite
preA Creating Commands . 46

Table 4.3 UCONfinite
preA Non-Creating Commands . 46

Table 4.4 ABACAM
α Formal Model . 53

Table 4.5 Definition of added Language for ABACAM
α 55

Table 4.6 Functional Specification for ABACAM
α . 55

Table 4.7 Reduction from ABACAM
α to UCONfinite

preA 58

Table 4.8 UCONfinite
preA Creating Commands . 61

Table 4.9 UCONfinite
preA Non-Creating Commands . 62

Table 4.10 UCONfinite
preA Deleting Commands . 63

Table 4.11 Basic Sets and Functions Reduction from UCONfinite
preA to ABACAM

α 65

Table 4.12 ABACAM
α Policy Configuration . 69

Table 4.13 A Sequence of Actions in ABACAM
α to Configure the UCONfinite

preA Non-

Creating Command ucr(s, o) . 70

Table 4.14 Configuration of Constraint: Give and Back User Token and Subject Token 71

Table 4.15 Configuration of Constraints: for Modify(Checking authorization, modify) 72

Table 4.16 Configuration of Constraints: for Create(Checking authorization, Create) . 73

Table 4.17 Configuration of Constraints: for Delete(Checking authorization, Delete) . 74

Table 4.18 A Sequence of Actions of ABACAM
α to Configure the UCONfinite

preA Creating

Command ucr(s, o). 79

xi

Table 4.19 A Sequence of Actions in ABACAM
α to Configure the UCONfinite

preA Deleting

Command ucr(s, o). 80

Table 4.20 Turing Machine (M) with ABACMI
α . 88

Table 5.1 OOReBAC Model . 95

Table 5.2 Functional Specification. 102

Table 5.3 Relationship. 103

Table 5.4 ACL. 103

Table 5.5 Policy Level . 104

xii

LIST OF FIGURES

Figure 2.1 ABACα Model (adapted from [82]) . 5

Figure 2.2 UCONpreA Model. 10

Figure 3.1 ReBAC Framework . 24

Figure 3.2 An Example of a Relationship Graph Expressible in ReBACB [56] 25

Figure 3.3 An Example of Node Attributes in Relationship Graph Expressible in ReBACBN

. 26

Figure 3.4 An Example of Edge Attributes in Relationship Graph Expressible in ReBACBE 26

Figure 3.5 Example of Dependent Edge Expressible in ReBACBNES [50] 27

Figure 3.6 ABAC Framework . 29

Figure 3.7 Relationship Graph for Example 1 . 31

Figure 3.8 Relationship Graph for Example 2 . 32

Figure 3.9 Attribute Composition and Composite Attribute for the Relationship Graph

of Example 3 . 33

Figure 3.10 Comparison Between ReBAC and ABAC with respect to Dynamics and

Attribute Domain . 34

Figure 3.11 Equivalence of ReBAC and ABAC Structural Classification 35

Figure 3.12 Non-Equivalence of ReBAC and ABAC Structural Classification 37

Figure 3.13 PEI Framework [114] . 40

Figure 4.1 Comparison of ABACα and its Enhancements. 41

Figure 4.2 Mapping of UCONfinite
preA Non-Creating Command 67

Figure 4.3 Mapping of UCONfinite
preA Creating Command 67

Figure 4.4 Mapping of UCONfinite
preA Deleting Command 68

Figure 4.5 Simulation of Turing Machine Movement with ABACMI
α 89

Figure 5.1 Object-to-Object Relationship Based Access Control. 93

xiii

Figure 5.2 Policy Level Example. 94

Figure 5.3 OOReBAC Model. 94

Figure 5.4 An Example of OOReBAC State I1. 97

Figure 5.5 Object Relationship in Medical Record. 98

Figure 5.6 MultiCloud Implementation of OOReBAC Model. 101

xiv

Chapter 1: INTRODUCTION

Attribute Based Access Control has become very popular due to its generalized structure and flexi-

bility to specify policy. The concept of using attributes for access control has been around for many

years, e.g., the X.500 standard [45] was an early effort for managing object information with at-

tributes. Attribute-based access control (ABAC) is considered one of the most generalized forms of

access control as it can capture the salient features of discretionary access control (DAC), manda-

tory access control (MAC) and role-based access control (RBAC) using appropriate attributes such

as access control lists, security labels and roles respectively [82], and bring in additional elements

such as location and time. ABAC enables more precise access control as it can consider a higher

number of discrete inputs into an access control decision [77]. Different ABAC models with rich

policy languages and sophisticated features have been proposed [81, 82, 86, 103, 125, 139].

Meanwhile, in recent years, on-line social networks (OSNs), such as Facebook, Twitter and

LinkedIn, have introduced an alternate form of authorization based on mostly the interpersonal

relationships between the accessing user and the content owner, rather than on attributes. Different

access control models have been proposed in this context [39, 43, 51–53, 68, 69]. These are gener-

ally called Relationship-Based Access Control (ReBAC) models. OSN ReBAC models mostly use

user-to-user relationships [39, 43, 52, 53, 68, 69] while user-to-resource and resource-to-resource

relationships have also been considered in some cases [41,51]. Several access control models have

been proposed for OSN ReBAC considering both single and multiple relationship types for autho-

rization policy specification [41, 51, 52, 68]. Subsequently, additional models have been proposed

to extend and generalize these OSN ReBAC models so that they can be applicable to computing

systems beyond OSNs [19, 56, 67, 110].

1.1 Motivation

ABAC has been around for a long time and can be viewed as a generalization, unification and

extension of earlier access control concepts including discretionary, mandatory and role-based

1

access control. ReBAC is relatively recent, with its initial motivation stemming from its essential

application in online social networks but now generally regarded as having broader applicability.

Both have considerable applications in industry, and are anticipated to continue being important

for the foreseeable future. Though a number of formal models have been proposed for both ABAC

and ReBAC and a considerable body of research has been published, still there is no well-accepted

consensus ABAC or ReBAC model as we have seen for traditional access control models (viz.

DAC, MAC and RBAC). One reason for this is there are very few attempts on doing formal study

to analyze the core characteristics of ABAC and ReBAC. Existing literature mainly deals with

developing and formalizing sophisticated models where most of them are domain specific.

ABAC for web services [139] proposed an ABAC model for web service authorization, while

[125] defined an ABAC model for semantic web technology. UCON [103] was proposed to cap-

ture authorization continuity and attribute mutability. [86] defines an ABAC model for service

oriented architecture considering requester’s privacy preference. ABACα [82] is proposed to

configure DAC, MAC and RBAC, while ABACβ [81] extends ABACα to incorporate different

RBAC extensions. NIST ABAC [77] provides a detailed explanation of ABAC concepts and con-

siderations for deployment of enterprise ABAC capabilities. XACML [98] proposes a standard-

ized mechanism to specify ABAC authorization policy, request and policy evaluation. Attribute-

based encryption supports fine-grained sharing of encrypted data [34, 48, 91, 100, 106, 112]. On

the other hand, ReBAC is relatively new. Most of the existing ReBAC models are defined for

OSNs [31, 41, 43, 51–53, 68, 72, 101]. Recently a few works have been published which consider

ReBAC beyond OSN, for general computing systems [39, 56, 58, 67, 69, 109]

1.2 Problem Statement

There is a fundamental lack of understanding regarding the relationship between ABAC and Re-

BAC, reflected in the fact that claims in the literature exist in support of the conflicting views

that ABAC subsumes ReBAC on one hand, and that ReBAC brings additional capabilities beyond

ABAC. At the same time there is a proliferation of ABAC models without a formal understand-

2

ing of their safety properties and relative expressive power. Finally, the potential of ReBAC has

only recently been recoginzed and there remain many directions in which ReBAC models can be

developed.

1.3 Summary of Contribution

The major contributions of this dissertation are as follows.

• A conceptual and semi-formal comparison between attribute and relationship based access

control models

• Safety analysis of an existing attribute based access control model (ABACα)

• Safety and expressive power analysis of two enhancements of ABACα

• A formal representation of an object-to-object relationship-based access control model (OORe-

BAC) and its implementation in open source IaaS cloud platform Openstack object storage

Swift

1.4 Organization of the Dissertation

Chapter 2 gives a brief background and preliminary concepts of ABAC, UCON, ReBAC, expres-

sive power comparison framework and the open source cloud IaaS platform Openstack. Chapter 3

provides a conceptual and semi-formal comparison between Attribute and Relationship Based Ac-

cess Control Models. Chapter 4 proves the decidability of safety in ABACα by reducing it to

safety of finite domain pre-UCON (which is previously known to have decidable safety). It fur-

ther develops an enhancement of ABACα, viz. ABACAM
α , and shows that ABACAM

α is equivalent

in expressive power to finite domain pre-UCON. It also presents another ABACα extension, viz.

ABACMI
α , with infinite domain entity attributes and shows that safety of ABACMI

α is undecidable.

Chapter 5 develops an object-to-object relationship based access control model and presents a

proof of concept implementation in open source cloud platform Openstack. Chapter 6 concludes

the dissertation.

3

Chapter 2: BACKGROUND

This chapter reviews background material germane to the dissertation research contributions de-

scribed in the following three chapters. This review includes a discussion of relevant ABAC, usage

control (UCON) and ReBAC models, a formal framework for comparing expressive power of ac-

cess control models and the open-source OpenStack platform for cloud computing.

2.1 The ABACα Model

ABAC has been studied for a long time and many different formal models have been proposed

[77, 81, 82, 86, 103, 125, 139]. Several of these are application specific or limited to a specific

domain. ABAC for web services [139] proposed an ABAC model for web service authorization,

while [125] defined an ABAC model for semantic web technology. UCON [103] was proposed

to capture authorization continuity and attribute mutability. [86] defines an ABAC model for ser-

vice oriented architecture considering requester’s privacy preference. ABACα [82] is proposed

to configure DAC, MAC and RBAC, while ABACβ [81] extends ABACα to incorporate different

RBAC extensions. NIST ABAC [77] provides a detail explanation of ABAC concepts and consid-

erations for deployment of enterprise ABAC capabilities. XACML [98] proposes a standardized

mechanism to specify ABAC authorization policy, request and policy evaluation. Attribute-based

encryption supports fine-grained sharing of encrypted data [34, 48, 91, 100, 106, 112].

In this section we particularly present a review of the ABACα model. This material is primarily

relevant to the results developed in Chapter 4.

2.1.1 The ABACα Formal Model (Review)

ABACα is an ABAC model that has “just sufficient" features to be “easily and naturally" config-

ured to do DAC, MAC and RBAC [82]. The core components of this model are: users (U), subjects

(S), objects (O), user attributes (UA), subject attributes (SA), object attributes (OA), permissions

(P), authorization policy, creation and modification policy, and policy languages. The structure of

4

Figure 2.1: ABACα Model (adapted from [82])

ABACα model is shown in Figure 2.1. Table 2.1 gives the formal definition of ABACα.

Users, Subjects, Objects and their Attributes

Users (U) represent human beings in an ABACα system who create and modify subjects, and

access resources through subjects. Subjects (S) are processes created by users to perform some

actions in the system. ABACα resources are represented as Objects (O). Users, subjects and

objects are mutually disjoint in ABACα, and are collectively called entities. NAME is the set of

all names for various entities in the system. Attributes are set-valued or atomic-valued functions

which take an entity (user, subject or object) and return a value from a finite set of atomic values.

Each user, subject, object is associated with a finite set of user attributes (UA), subject attributes

(SA) and object attributes (OA) respectively. Each attribute is a set-valued or atomic-valued func-

tion. attType is a function that returns type of the attribute, i.e., whether it is set or atomic valued.

SCOPE represents the domain of an attribute which is a finite set of atomic values. Potentially

infinite domain attribute such as location, age are represented as large finite domains. For each at-

tribute att, SCOPE(att) can be an unordered, a totally ordered or a partially ordered set. Range(att)

is a finite set of all possible atomic or set values for attribute att. Each attribute takes a user or a

subject or an object, and returns a value from its range. SubCreator is a system function which

specifies the creator of a subject. SubCreator is assigned by the system at subject creation time,

and cannot change. UAVT, SAVT, OAVT are sets of all possible Attribute Value Tuples for users,

5

Table 2.1: ABACα Formal Model
Basic Sets and Functions
U, S, O are finite sets of existing users, subjects and objects
UA = {ua1, ua2, . . . ual }, finite set of user attributes
SA = {sa1, sa2, . . . sam }, finite set of subject attributes
OA = {oa1, oa2, . . . oan}, finite set of object attributes
SubCreator: S→ U. A system function, specifies the creator of a subject.
attType: UA ∪ SA ∪ OA→ {set, atomic}
For each attribute att∈ UA ∪ SA ∪ OA:
SCOPE(att) denotes the finite set of atomic values for attribute att.
Range (att) represents a finite set of atomic or set values as the range of att.

Range(att) =

{
SCOPE(att) attType(att) = atomic.
2SCOPE(att) attType(att) = set.

uai: U→ Range(uai), uai ∈ UA
saj : S→ Range(saj), saj ∈ SA
oak: O→ Range(oak), oak ∈ OA
Tuple Notation
UAVT ≡ ×li=1 Range(uai), set of all possible attribute value tuples for users
SAVT ≡ ×mj=1 Range(saj), set of all possible attribute value tuples for subjects
OAVT ≡ ×nk=1 Range(oak), set of all possible attribute value tuples for objects
uavtf: U→ UAVT, current attribute value tuple for a user
savtf: S→ SAVT, current attribute value tuple for a subject
oavtf: O→ OAVT, current attribute value tuple for an object

Authorization Policy
P = {p1, p2, . . . pn}, a finite set of permissions.

• Authorization on Object
For each p∈ P, Authorizationp(s:S,o:O) returns true or false.
Specified in language LAuthorization.

Creation, Deletion and Modification Policy
Subject Creation Policy:

• Subject Creation by User
ConstrSubCreatebyUser(u:U,s:NAME,savt:SAVT) returns true or false. Specified in language
LConstrSub.

Subject Deletion Policy:

• Subject Deletion by User
In ABACα subject deletion has fixed policy.
A subject can be deleted only by its creator.

Subject Modification Policy:

• Subject Modification by User
ConstrSubModbyUser(u:U,s:S,savt:SAVT) returns true or false. Specified in language LConstr-
SubMod.

Object Creation Policy:

• Object Creation by Subject
ConstrObjCreatebySub(s:S,o:NAME,oavt:OAVT) returns true or false. Specified in language
LConstrObj.

Object Modification Policy:

• Object Modification by Subject
ConstrObjModbySub(s:S,o:O,oavt:OAVT) returns true or false. Specified in language LConstrOb-
jMod.

Policy Languages
Each policy language is an instantiation of the Common Policy Language CPL that varies only in the values
it can compare. Table 2.2 defines CPL for ABACα. Table 2.3 shows the set and atomic instantiation for
different languages.
Functional Specification
ABACα operations are formally specified in Table 2.4

6

Table 2.2: Definition of CPL
CPL
ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ) | ¬ ϕ | ∃ x ∈ set.ϕ | ∀ x ∈ set.ϕ | set setcompare set | atomic ∈
set | atomic atomiccompare atomic
setcompare ::= ⊂ | ⊆ | 6⊆
atomiccompare ::= < | = | ≤

subjects and objects respectively. The functions uavtf, savtf and oavtf, return current attribute value

tuples for a particular user, subject or object respectively.

Authorization Policy

ABACα authorization policy consists of a single authorization policy for each permission. Per-

missions are privileges that a user can hold on objects and exercise through subjects. It enables

access of a subject on an object in a particular mode, such as read or write. P = {p1, p2, . . . pn} is

a finite set of permissions. Each Authorization Policy is a boolean function which is associated

with a permission, and takes a subject and an object as input and returns true or false based on the

boolean expression built from attributes of that subject and object.

Creation and Modification Policy

User creation, attribute value assignment of user at creation time, user deletion and modification

of a user’s attribute values is done by security administrator, and is outside the scope of ABACα.

Subject creation and assigning attribute value to subject during creation time is constrained by the

values of user attributes. Only creator is allowed to terminate and modify attributes of a subject.

Modification of subject attributes is constrained by the creating user’s attribute values, and existing

and new attribute values of the concerned subject.1 Objects are created by subjects. Object creation

and attribute value assignment at creation time is constrained by creating subject’s attribute values

and proposed attribute value for the object. Modification of object attribute value is constrained by

subject and object’s existing attribute values and proposed attribute values for object. ABACα has

1In the original definition of ABACα [82] subject creation and modification have identical policies. However,
a correct configuration of MAC in ABACα requires different policies for these two operations. Hence, we define
ABACα here to have separate policies for these two operations.

7

Table 2.3: Definition of Languages for ABACα

Language set atomic

LAuthorization setsa(s) | setoa(o) atomicsa(s) | atomicoa(o)
LConstrSub setua(u) | setsa′(s) atomicua(u) | atomicsa′(s)
LConstrSubMod setua(u) | setsa(s) | setsa′(s) atomicua(u) | atomicsa(s) | atomicsa′(s)
LConstrObj setsa(s) | setoa′(s) atomicsa(s) | atomicoa′(o)
LConstrObjMod setsa(s) | setoa(o)| setoa′(o) atomicsa(s) | atomicoa(o)| atomicoa′(o)

Table 2.4: Functional Specification of ABACα Operations
Operations Conditions Updates
Accessp(s,o) s∈ S ∧ o∈ O

∧ Authorizationp(s, o)
CreateSubjectbyUser u∈U ∧ s/∈S ∧ S′ = S∪{s}
(u,s:NAME,savt:SAVT) ConstrSubCreatebyUser(u, s, savt) SubCreator(s) = u

savtf(s) = savt
DeleteSubjectbyUser s∈S ∧ u∈U ∧ S′ = S\{s}
(u,s:NAME) SubCreator(s) = u
ModifySubjectAttbyUser u∈U ∧ s∈S ∧ savtf(s) = savt
(u,s:NAME,savt:SAVT) SubCreator(s) = u ∧

ConstrSubModbyUser(u, s, savt)
CreateObjectbySubject s∈S ∧ o/∈O ∧ O′ = O∪{o}
(s,o:NAME,oavt:OAVT) ConstrObjCreatebySub(s,o,oavt) oavtf(o) = oavt
ModifyObjectAttbySubject s∈S ∧ o∈O ∧ oavtf(o) = oavt
(s,o:NAME,oavt:OAVT) ConstrObjModbySub(s,o,oavt)

subject deletion however there is no object deletion. An existing subject can be deleted only by its

creator.

Policy Languages

Each policy is expressed using a specific language. CPL is the common policy language part for

each language. Each language is a CPL instantiation with different values for set and atomic.

CPL is defined in Table 2.2.

Authorization Policy: The boolean expression of authorization policy is defined using the lan-

guage LAuthorization which is a CPL instantiation where set and atomic refers to the set and

atomic valued attribute of concerned subject and object.

Creation and Modification Policy: Subject creation, subject attribute modification, object cre-

ation and object attribute modification policies are all boolean expressions and defined using LCon-

strSub, LConstrSubMod, LConstrObj and LConstrObjMod respectively. LConstrSub is a CPL in-

8

stantiation where set and atomic refers to the set and atomic valued attribute of creating user and

proposed attribute values for subject being created. LConstrSubMod is a CPL instantiation where

set and atomic refers to the set and atomic valued attribute value of concerned user and subject

and proposed attribute value for subject. LConstrObj is a CPL instantiation where set and atomic

refers to the set and atomic valued attribute value of creating subject and proposed attribute value

for object being created. LConstrObjMod is a CPL instantiation where set and atomic refers to

the set and atomic valued attribute value of concerned subject and object and proposed attribute

values for the object.

Functional Specification

ABACα functional specification has six operations: access an object by a subject, creation of

subject and object, deletion of subject, modification of subject and object attributes. Each ABACα

operation has two parts: condition part and update part. Table 2.4 shows the specification of

condition and update parts for ABACα operations.

2.2 The UCONfinite
preA Model

Usage control (UCON) was introduced by Park and Sandhu [103]. The family of UCONABC

models integrates Authorization(A), oBligation(B) and Conditions(C). UCON covers continuity

(ongoing control) and mutability along with authorization, obligation and conditions. Among the

family of UCONABC models UCONpreA covers pre-authorization of access, which is the most

common mode of access control.

2.2.1 The UCONfinite
preA Model (Review)

In usage control authorization model entities are subjects and objects, and subjects are a subset of

objects. Each object has a unique identifier and a finite set of attributes. Attributes can be mu-

table or immutable. Usage control Pre-Authorization model (UCONpreA) evaluates authorization

decisions of permission prior to the execution of commands. Figure 2.2 shows the components of

9

Figure 2.2: UCONpreA Model.

UCONpreA model.

The UCONfinite
preA model, i.e., pre-authorization UCON with finite attributes, is defined through

a usage control scheme [107], as follows.

1. Object schema OS∆, is of the form {a1: σ1, . . . , an: σn} where each ai is the name of an

attribute and σi is a finite set specifying ai’s domain. UCONfinite
preA considers single object

schema for different objects and considers only atomic values for each domain σi.

2. UR = {r1, r2, . . . rk}, a set of usage rights, where ri defines a permission enabled by a usage

control command.

3. UC = {UC1, UC2, . . . UCl}, a set of usage control commands.

4. ATT ={a1, a2, . . . an}, a finite set of object attributes.

5. AVT = σ1 × . . . × σn, set of all possible attribute value tuples.

6. avtf: O→ AVT, returns existing attribute value tuple of an object.

7. Each command in UC is associated with a right and has two formal parameters s and o,

where s is a subject trying to access object o with right r. A single right can be associated

10

with more than one command. Number of commands (l) ≥ number of rights (k). There are

two types of usage control commands, Non-Creating Command and Creating Command.

Each command has a precondition part and an update part. Table 2.5 shows the structure of

non-creating and creating command of UCONfinite
preA .

(a) In UCONfinite
preA non-creating command, fb(s,o) is a boolean function which takes the

attribute values of s and o and returns true or false. If the result is true then the PreUp-

date is performed with zero or more attributes of s and o independently updated to new

values computed from their attribute values prior to the command execution. Also the

usage right r is granted. Otherwise the command terminates without granting r. f1 and

f2 are the computing functions for new values.

(b) In UCONfinite
preA creating command, fb(s) is a boolean function which takes the attribute

values of s and returns true or false. If the result is true then the PreUpdate is performed

with creating object o and zero or more attributes of s will be updated to new values

computed from the attribute values of s. All attributes of the newly created object o are

assigned computed attribute values. Also the usage right r is granted. Otherwise the

command terminates without granting r. f1 and f2 are the computing functions for new

values.

(c) In UCONfinite
preA deleting command, fb(o1,o2) is a boolean function which takes the at-

tribute values of o1 and o2 and returns true or false. If the result is true then the Pre-

Update is performed with deleting object o2 and zero or more attributes of o1 will be

updated to new values computed from the attribute values of o1 and o2. Also the usage

right r is granted. Otherwise the command terminates without granting r. f1 is the

computing functions for new values of o1.

11

Table 2.5: UCONfinite
preA Command Structure

Non-Creating Command Creating Command Deleting Command
Command_Namer(s,o) Command_Namer(s,o) Command_Namer(o1,o2)
PreCondition:fb(s,o)→ {true,false}; PreCondition:fb(s)→ {true,false}; PreCondition:fb(o1,o2)→ {true,false};
PreUpdate: s.ai1 := f1,ai1 (s,o); PreUpdate: create o; PreUpdate: delete o2;

... s.ai1 := f1,ai1 (s); o1.ai1 := f1,ai1 (o1,o2);

s.aip := f1,aip (s,o);
...

...
o.aj1 := f2,aj1 (s,o); s.aip := f1,aip (s); o1.aip := f1,aip (o1,o2);
... o.aj1 := f2,aj1 (s);

o.ajq := f2,ajq (s,o);
...
o.ajq := f2,ajq (s);

2.3 ReBAC Models

As OSNs have gained popularity, several ReBAC models have been introduced to capture various

authorization policies. More recently, researchers have proposed extended ReBAC models appli-

cable to other computing systems beyond OSNs. In this section, we review these two types of

ReBAC models. These models are particularly relevant for Chapter 3.

2.3.1 ReBAC for Online Social Networks

Fong et al. [68] presented a Facebook-like access control model, featuring four types of policies

that cover four different aspects of access in OSNs. The four policies include user search, traversal

of the social graph, communication between users and normal access to objects owned by users.

The policy vocabulary supports expressing some topology-based properties, such as k common

friends and k clique. The model uses single relationship types between users.

Carminati et al. [43] proposed an access control model which considers type, depth and trust

metrics of user-to-user relationship between accessing user and target user. It also considers multi-

ple types of relationships between users. In [41], Carminati et al. proposed a model which utilizes

semantic web technology. This model considers multiple type relationships between users and

resources.

Cheng et al. [52] proposed a user-to-user relationship based access control model with a regular

expression-based policy specification language. Social graph of UURAC contains user-to-user

12

relationships only. The connection between resources and users are referred to as controlling user

(e.g., owner, tagged user). URRAC model [51] extends UURAC to include user-to-resource and

resource-to-resource relations. In both models, multiple types of relationships are supported, and

policy language can specify relationship path patterns between accessing user and target resource

or user.

Subsequently Cheng et al. [53] defined an attribute-aware ReBAC model to express the con-

textual nature of relationships and users. The authors have extended their earlier UURAC model

to incorporate node attributes and relationship attributes. They further introduced the concept of

a graph attribute such as count which is associated with the relationship graph other than with a

particular node or edge.

Bennett et al. [31] proposed a ReBAC model that considers multiple types of relationships be-

tween users and demonstrates how conflicts and potential misconfigurations can be automatically

detected using the Alloy Analyzer [1]. Pang et al. [101] proposed an access control scheme for

OSN where they have taken hybrid logic approach to use public information along with relation-

ships.

2.3.2 ReBAC Beyond Online Social Environment

Fong et al. [67] proposed a formal ReBAC model intending to widen the application of ReBAC

beyond social computing. The model considers multiple relationship types between users with

directional relationships and access contexts, and uses a modal logic language for policy speci-

fication. The connection between users and resources is maintained through a system function

called ‘resource owner.’ Fong et al. [69] extended the policy language of [67] and characterized

its expressiveness. Subsequently they defined hybrid logic for ReBAC which can express complex

relationship requirements [39].

Crampton et al. [56] proposed the RPPM model that can be applied to general computing

system. The model considers users, resources and other logical and physical entities (i.e., files,

folders, organizations, etc.) as nodes of a labeled relationship graph. Policies are defined using

13

path conditions. The model allows multiple types of relationship between different entities. The

model uses a two-stage decision process: it first computes the path between requester and the re-

quested resource and tries to find matches from a list of policies, and then it determines whether

those policies are authorized. Rizvi et al. [110] demonstrated an implementation of RPPM model

in an open-source medical record system. Subsequently they extended their model to be interop-

erable with RBAC [109]. Recently Crampton et al. [58] proposed a framework for inter-operating

multiple ReBAC model instances by initiating request in one system to target resource in a second

system.

Most ReBAC models consider user-to-user and possibly user-to-resource relationships. Very

few of consider resource-to-resource relationships. Models that consider resource-to-resource re-

lationships typically do so through users. Recently Ahmed et al. [19] proposed a ReBAC model

which considers object-to-object relationships without intervening users, and demonstrated an im-

plementation of the model in the OpenStack’s [9] object storage, Swift [13]. This is further dis-

cussed in Chapter 5.

All the models reviewed so far are operational models. Recently a number of ReBAC admin-

istrative models have also been proposed for general purpose ReBAC [50,57,127] which consider

graph dynamics such as adding/deleting nodes (entities) and or edges (relationships). In particu-

lar, [50] introduces the concept of dependent edge in ReBAC and considering dependencies during

edge deletion.

2.4 Expressive Power Comparison Framework

Expressive power comparison is a fundamental problem in access control and has been extensively

studied in the literature [24, 25, 47, 93, 99, 117, 119, 122, 131, 132]. Expressive power of an access

control model is more precisely the expressive power of the schemes of that model, which captures

the notion of policies that can be represented in systems based on that model’s schemes [131].

Tripunitara and Li [131] defined a formal framework for comparing expressive power of access

control models which is based on simulations that preserve security properties. In their framework

14

they presented two types of simulations: reductions and state matching reductions. They showed

that state matching reductions are necessary and sufficient for preserving compositional security

properties. A state matching reduction from scheme A to scheme B ensures that all states of

scheme A can be realized in scheme B. Conversely a state matching reduction from scheme B to

scheme A ensures that all states of scheme B can be realized in scheme A. If the former is true,

then scheme B is at least as expressive as scheme A. If both the former and latter are true, schemes

A and B are equivalent in expressive power. This notion of equivalence is also called bisimulation

in the broader computer science literature.

An access control model is defined to be a set of access control schemes, i.e., the schemes

expressible using the constructs of the model. An access control scheme is a state transition system

〈Γ,Ψ, Q,`〉, where Γ is a set of states, Ψ is a set of state transition rules, Q is a set of queries and

`: Γ × Q→ {true, false} is the entailment relation. The notion of state-matching reduction and

expressive power equivalency are formally defined as follows.

Definition 1. State Matching Reduction:

Given two schemes A and B and a mapping A to B, σ : (ΓA×ΨA)∪QA → (ΓB×ΨB)∪QB, we say

that the two states γA and γB are equivalent under the mapping σ when for every qA ∈ QA, γA `A

qA if and only if γB `B σ(qA). A mapping σ from A to B is said to be a state-matching reduction

if for every γA ∈ ΓA and every ψA ∈ ΨA, 〈γB, ψB〉 = σ(〈γA, ψA〉) the following properties hold.

1. For every γA1 in scheme A such that γA ∗−→ψ γ
A
1 , there exists a state γB1 such that γB ∗−→ψ γ

B
1

and γA1 and γB1 are equivalent under σ.

2. For every γB1 in scheme B such that γB ∗−→ψ γ
B
1 , there exists a state γA1 such that γA ∗−→ψ γ

A
1

and γB1 and γA1 are equivalent under σ.

Definition 2. Expressive Power Equivalency of Access Control Models:

Given two access control models M and M′, if for every scheme in M there exists a state-

matching reduction from it to a scheme in M′, and vice versa, then we say that M and M′ are

equivalent in expressive power.

15

In order to show that a reduction from model A to model B is state matching, we have to show

the following:

1. For each scheme in A, construct a mapping σA that maps A to a scheme B in B.

2. Prove the σA mapping from A to B satisfies the following two requirements for a state-

matching reduction:

(a) For every state γA1 reachable from γA under the mapping σA there exists a reachable

state in B scheme that is equivalent (answers all the queries in the same way).

(b) For every state γB1 reachable from γB under the mapping σA there exists a reachable

state in A scheme that is equivalent (answers all the queries in the same way).

In order to show that models A and B are equivalent in expressive power, we have to show:

• There exists a state matching reduction from A to B.

• There exists a state matching reduction from B to A.

2.5 The Openstack Cloud Platform

OpenStack [9] is a free and open-source software platform for cloud computing. It is mostly

deployed as infrastructure-as-a-service (IaaS). Openstack makes virtual servers and other resources

available to customers. The software platform consists of interrelated components that control

diverse, multi-vendor hardware pools of processing, storage, and networking resources throughout

a data center. Users either manage it through a web-based dashboard, through command-line tools,

or through RESTful web services. In this section, we briefly describe Openstack object storage

Swift. Specifically, we focus on the access control architecture of Swift. The implementation

described in Chapter 5 utilizes Swift.

16

2.5.1 Swift Storage Structure

Swift is a highly available, distributed, eventually consistent object/blob store. Organizations can

use Swift to store lots of data efficiently, safely, and cheaply [13]. Swift users use RESTful API

[14] to upload or download objects to and from Swift object storage. Inside Swift, a project

is assigned as an account. The account holds containers. Containers are similar to directories,

however containers cannot be nested. A user associated with a Swift account can have multiple

containers. To manage accounts, containers and objects Swift uses account servers, container

servers and object servers accordingly.

Swift Authorization for Object Access

In OpenStack object storage Swift authorization (request to an object access) is currently done by

Access Control List (ACL). Swift has two levels of ACL: Account Level ACL and container level

ACL [15]. Container Level ACL is associated with containers in terms of read (download any

object of that container) or write (upload an object in the container) or list [35]. Account ACLs

allow users to grant account level access to other users. The limitations of Swift authorizations are:

• It cannot express object level ACL. To specify object level ACL every object needs to be

stored in a separate container.

• It cannot give user access to a particular object if the user is not a member of the ac-

count/project.

• It doesn’t support multicloud resource sharing.

17

Chapter 3: COMPARISON OF REBAC AND ABAC

Attribute-based access control (ABAC) expresses authorization policy via attributes while relation-

ship-based access control (ReBAC) does so via relationships. While ABAC concepts have been

around for a long time, ReBAC is relatively recent emerging with its essential application in online

social networks. Even as ABAC and ReBAC continue to evolve, there are conflicting claims in the

literature regarding their comparison. It has been argued that ABAC can subsume ReBAC since

attributes can encode relationships. Conversely there are claims that the multilevel (or indirect)

relations of ReBAC bring fundamentally new capabilities. So far there is no rigorous comparative

study of ABAC vis a vis ReBAC. This chapter presents a comparative analysis of ABAC and Re-

BAC, and shows how various ReBAC features can be realized with different types of ABAC. We

first identify several attribute types such as entity/non-entity and structured attributes that signif-

icantly influence ABAC or ReBAC expressiveness. We then develop a family of ReBAC models

and a separate family of ABAC models based on the identified attribute types, with the goal of

comparing the expressive power of these two model families. Further, we identify different dy-

namics of the models that are crucial for model comparison. We also consider different solutions

for representing multilevel relationships with attributes. Finally, the ABAC and ReBAC model

families are compared in terms of relative expressiveness and performance implications.

3.1 Attribute Types

In our comparison and classification for ReBAC and ABAC models, attributes play an important

role. In this section we identify and discuss various types of attributes based on several different

criteria. Some of these attribute types are crucial for ABAC and ReBAC comparison as their

existence in a model strongly influences its expressiveness and performance. Others are not quite

significant for our comparison purpose. In the next two sections, we use these attribute types to

classify ReBAC and ABAC models to facilitate comparison between them.

We classify attribute types using five different criteria. Specifically the criteria are based on (1)

18

how attribute value(s) are structured, (2) what the attribute scope is, (3) boundedness of attribute

range, (4) attribute association and (5) attribute mutability.

Depending upon the type of attribute value, there can be three types of attributes.

• Atomic-valued or Single-valued Attribute: If an attribute has at most one value associated

with it at any one point in time, it is called atomic-valued or single-valued attribute [11, 82].

For example, gender attribute can have only a single value at a given time.

• Set-valued or Multi-valued Attribute: If an attribute can have more than one value asso-

ciated with it at any one point in time, it is called set-valued or multi-valued attribute. For

example, a person can have more than one phone number [11, 82].

• Structured Attribute: A structured attribute has a number of single or multi-valued sub-

attributes [12]. For example, a Person-Info attribute can have sub-attributes of name, age

and phoneNumber.

Depending upon the scope of the attribute, an attribute can either be an Entity Attribute or

Non-entity Attribute.

• Entity Attribute: An entity is a thing which can be distinctly identified. A specific person,

company an object or event is an example of entity [49]. Entity attribute takes an entity as

input and returns another entity, a set of entities, or a structured tuple containing at least one

entity. For example, an attribute value of parent of a person, owner of an object or friend of

a person is another person, i.e., another entity.

• Non-entity Attribute: An attribute whose range is not defined on the set of entities in the

system is called a non-entity attribute. For example, user’s age or gender does not include

another entity as its value. The concept of non-entity attribute depends upon what is defined

as entities in the system. For example, suppose roles or organizations are entities in a system,

and the range of attributes “assigned-roles” and “worksAt” are a set of roles and a set of

organizations, respectively. In that case both attributes are entity attributes. If roles and

organizations are not defined as entities in the system, these are non-entity attributes.

19

Depending upon whether the range of an attribute is bounded or not, attributes can be either

finite domain attribute or infinite domain attribute.

• Finite Domain Attribute: Range of this attribute type is a finite set of attribute value (e.g.,

gender, role).

• Infinite Domain Attribute: Range of this attribute type is a countably infinite set of attribute

values (e.g, time). Particularly important for access control, is that entity attributes where

new entities can be created without bound are infinite domain attributes. This is required to

accommodate unbounded creation of subjects and objects, which is the typical assumption

in most systems.

Considering the association of an attribute we can have two types of attributes [77, 81, 139]

• Contextual or Environmental Attribute: These attributes are independent and not asso-

ciated with any specific user, subject, object or other entity in the system. They are global

and associated with system. For example, current-time is system-wide information and

not associated with any specific entity [81]. Other examples include system status, network

security level, and so on [77, 139].

• Meta Attribute: Meta attributes are attributes of an attribute. Unlike regular attributes that

are associated with entities, meta attributes are associated with other attributes. For example

a user is associated with a role and the role is associated with a task. Here, the role is an

attribute, and the task is a meta attribute [81].

Considering the mutability of attributes there are two types of attribute [103].

• Mutable Attribute: Mutable attributes are changed as a consequence or side effect of users’

access or activity.

• Immutable Attribute: Immutable attributes can be changed only by direct administrative

activity of a user or administrator.

20

The notions of entity/non-entity, finite/infinite domain, atomic-valued/set-valued/structured at-

tributes are important for ReBAC-ABAC comparison as they are key attribute types that will

strongly influence expressibility of relationships between entities or configurability of relationship

graph.

Unlike these key attribute types, contextual/environmental attribute is a special type of attribute,

not related to entities. Meta attribute defines relationship between attributes. Mutability is special

feature specified in usage control for consumable authorization. These type of attributes are not

relevant to ReBAC-ABAC comparisons with respect to expressiveness or performance. In the

following, we will further discuss the definitions of these key attribute types as well as some

assumptions for the rest of this chapter.

Attribute Definitions for ReBAC and ABAC Comparison

For our ReBAC and ABAC comparison, we consider entity and non-entity, finite and infinite do-

main, atomic-valued, set-valued and structured attributes. Below, we define these key attribute

types (except for single-valued, multi-valued and structured attributes which have been adequately

defined above).

Definition 3. Entity Attribute: An attribute atti is an entity attribute if

i. range of atti is a set of entities (i.e. atti: Ej → Ek),

ii. range of atti is a powerset of entities (i.e. atti: Ej → 2Ek), or

iii. atti is a structured attribute with at least one sub-attribute being an entity attribute.

For example, if user is defined as an entity in the system and best-friend is an atomic or set-

valued attribute of user then best-friend is an entity attribute. At any instant each entity set is fixed

but can change over time if the system allows entity changes (i.e., creation or deletion of entities.).

If atti is a structured attribute and at least one sub-attribute of atti is an entity attribute then atti is

also an entity attribute. For example let’s say ‘roleInfo(roles,assignedby)’ is a structured attribute

which has ‘roles’ and ‘assignedby’ as sub-attributes. Here ‘roles’ is non-entity attribute whose

21

range is set of roles however ‘assignedby’ is an entity attribute whose range is set of users. So

‘roleInfo’ is an entity attribute.

Definition 4. Non-Entity Attribute: An attribute atti is a non-entity attribute if it is not an entity

attribute.

Examples are phoneNumber and age. Note that if atti is a structured attribute then every sub-

attribute of atti must be a non-entity attribute for atti to be a non-entity attribute.

Definition 5. Finite Domain Attribute: An attribute domain is finite if the range of the attribute

does not grow over time.

For example, ‘gender’ is a finite domain attribute. Also, ‘roles’ and ‘security clearance’ are

finite domain attributes if the system does not allow new roles or security clearances to be added

over time.

Definition 6. Infinite Domain Attribute: An attribute domain is infinite if the range of the attribute

grows over time.

For example, in an OSN, if a new user can be created so he or she can be a friend of other users,

the friend attribute is an infinite domain attribute as the range of friend is changed over time.

Finally, we introduce the familiar concept of attribute function composition [29, 71].

Definition 7. Attribute Function Composition: Nesting two or more attribute functions to form a

single new function is known as attribute function composition. The composition of two attribute

functions f : X→Y and g : Y→ Z yields a function which maps x ∈X to g(f(x)) ∈ Z. Composition

is denoted as g ◦ f, where g is a function whose domain includes the range (or codomain) of f. We

write (g ◦f)(x) as g(f(x)) for convenience.

A function h(x) = fn(......f2(f1(x))....) which is the composition of n functions (same or

different), say f1 to fn, is also said to be a composite function. Intuitively, composing two or more

functions is a chaining process in which the output of the first function becomes the input of the

second one, and the output of the (k-1)th function becomes the input of the kth function.

22

Assumptions

For ease of our comparison, all the ReBAC and ABAC models considered in this paper comply

with the following assumptions.

1. All non-entity attributes are finite domain. Attributes such as role, department, title, gender,

etc., typically admit only a small number of finite values by their intrinsic nature. Attributes

such as location can be ever finer grained, so in principle could be regarded as infinite domain

but a large finite domain should be adequate. Time being modeled as a finite domain has

similar issue. For our purpose a finite domain assumption is reasonable.

2. Each entity has a countably infinite set for all possible entities of that type. For example

if users, subjects and objects are the only entities defined in a particular system then the

countably infinite sets for users, subjects and objects are U , S and O. The existing set of

users, subjects and objects at any moment are U, S, O respectively where U, S, O are finite

sets, and U ⊂ U , S ⊂ S and O ⊂ O.

3. Identity of an entity is not reusable. If an entity gets deleted, its identity cannot be used for

another entity that is created after the deletion.

4. All entity attribute functions are partial functions defined on existing entities only. For ex-

ample let U is the countably infinite set of all possible users, and U the finite set of current

users (U⊂ U). An entity attribute function f : U → Y is defined only for elements of U and

is undefined for elements in U-U . We understand f : U → Y for an entity set U to mean that

U will change with time but is finite at any moment. Note that if the system allows creation

of entities then the entity attributes have infinite or unbounded domain. If the system doesn’t

allow any entity creation or deletion then the entity attributes form a finite domain.

5. For attribute function composition inner attribute functions should always be entity at-

tributes. We require that a non-entity attribute can only occur as the outermost function

23

Figure 3.1: ReBAC Framework

in a composition. So for a composition fn(......f2 (f1(x))....), for 1 ≤ i≤ n-1, fi must be an

entity attribute function, while fn can be either entity or non-entity attribute.

6. For any set valued attribute function f defined on set X , we understand f(X) to mean⋃
xi∈X f(xi). So an attribute function composition friend(friend(“Alice")) means⋃
ui∈friend(“Alice”) friend(ui)

7. We understand that structured attribute is a multivalued tuple of atomic and or set-valued

attributes. So it is more expressive than atomic or set valued attributes. Structured attribute

can express atomic or set-valued attribute by having a single sub-attribute.

3.2 ReBAC Classification

In this section we develop a ReBAC framework including a family of structural models. The

framework is illustrated in Figure 3.1 and consists of two components. Specifically, Figure 3.1(a)

shows a family of structural models while Figure 3.1(b) shows the different types of dynamics

found in ReBAC models.

The goal of this framework is to build a classification of ReBAC models that facilitates compar-

ison with ABAC models. While there are many sophisticated proposals on ReBAC policy expres-

sion mechanisms such as incoming versus outgoing policy, policy individualization, modal/hybrid/

24

Figure 3.2: An Example of a Relationship Graph Expressible in ReBACB [56]

first order/propositional logic based policies, this framework does not focus on policy specifica-

tion. Rather it is independent of policy languages and focusses on structural and dynamic aspects

of ReBAC.

Figure 3.1(a) depicts ReBAC models in a Hasse diagram with increasing capabilities as we go

upwards in this partial order. In ReBAC, entities are represented as nodes in a relationship graph,

and relations as entity to entity edges. We use the terms “node” and “entity” as synonyms, and

likewise for the terms “edge” and “relation”. The base model ReBACB allows for multiple node

types (e.g., user, resource project, organization, group, etc.) and multiple directed or undirected

edge types (e.g., friend, coworker, spouse, parent, etc.). Figure 3.2 shows an example relationship

graph [56] expressible in ReBACB. Most of the relationship graphs permitted in existing ReBAC

models, including [51, 52, 56, 67, 68], can be expresed with the capabilities of ReBACB.

ReBACBN adds node attributes to ReBACB. Node attributes enable consideration of entity

attributes along with relationships in authorization policies. For example, in a professional social

network we may have a policy that an employee of an organization o1 can connect to a recruiter

of organization o2 only if the recruiter is not already connected to any employees of o1. In this

case, the organization attribute of users (nodes) needs to be considered along with professional

relationships. Another example is an online dating site where a single male user wants to connect

a single female who has less than 4th degree connection with him through only his female friends

and is at least two years younger than him. Here we need to consider gender, age and relationship

depth along with relationships. Such attribute-aware ReBAC is discussed in greater detail in [53].

Figure 3.3 shows an example relationship graph with node attributes.

25

Figure 3.3: An Example of Node Attributes in Relationship Graph Expressible in ReBACBN

Figure 3.4: An Example of Edge Attributes in Relationship Graph Expressible in ReBACBE

ReBACBE extends ReBACB with edge attributes. For example, some ReBAC models use trust

value of relationships to show the connection strength between users [42, 43]. In general, when a

ReBAC authorization policy needs to consider some properties of relationships beyond relation-

ship types, the relationship graph needs edge attributes to store and express those criteria, such as

proposed in [53]. Figure 3.4 provides an example of edge attributes in a relationship graph. Here

“Bob” is assigned to supervise “Project1” and “assignedBy” is an edge attribute for relationship

type “supervises” which specifies who has assigned “Bob” as supervisor. Similarly “tenant1” has

“tenantTrust” relationship with “tenant2” and here “trustValue” specifies the strength of how much

“tenant2” trusts “tenant1”.

ReBACBNE brings together the two separately motivated extensions of ReBACBN and ReBACBE,

such as in [53]. Following common practice, node and edge attributes in these models are atomic

or set-valued attributes.

Recently Cheng et al. [50] proposed a ReBAC administrative model where they introduced the

concept of dependent edge in relationship graph. A dependent edge example of MT-RBAC [50] is

shown in Figure 3.5. Here user u owned by tenant x (with relationship type UO) can be “assigned

to” a role r (with relation type UA) which is “owned by” tenant y (with relationship type RO) only

if tenant y trusts tenant x (with relationship type TT). This particular tenant-trust relationship needs

to be considered during role assignment or any time the trust-relationship between x and y changes.

If the tenant’s trust relationship is revoked at some point of time, the role assignment needs to be

revoked as well. In order to configure this scenario using attributes, we need to store a paired set

26

Figure 3.5: Example of Dependent Edge Expressible in ReBACBNES [50]

of the role values and the required trust relationship. This additional information allows the model

to consider cascading revocation [33,62,75] of dependent edges. This edge dependency in a graph

cannot be captured using edge types or atomic or set valued edge attributes. To be precise, we

will need structured attributes which can store multiple relevant attributes as a single attribute in

a certain structure. For the above scenario, the structured attribute can store information of those

edges that are required to create another edge. For instance, “dependsOn” attribute of relation-

ship type UA can store a tuple of three sub-attributes: (sourceNode, targetNode, relationshipType),

hence, (y,x,TT) for the example above. Consider another example where “securityLabel” is an

object attribute. If a graph needs to store the information who has assigned a particular “security-

Label” to an object, we can use a structured attribute where sub-attributes are (label, assignedBy).

If relationship graph only considers atomic or set valued attributes it won’t be able to store this

information. Our final model ReBACBNES considers structured attributes for both nodes and edges.

This completes our discussion of Figure 3.1(a).

Considering the changes or dynamism in ReBAC there are 4 dynamics shown in Figure 3.1(b).

The dynamics are as follows.

• Static: In a static ReBAC model, attribute values, nodes and edges of the graph remain

unchanged. A static graph is used for access only. Actions such as add or delete relationship

between two entities (add or delete edges in the relationship graph), add or delete entities

(add or delete nodes in relationship graph are not allowed) and change of attribute values are

not allowed.

27

• Attribute Dynamic: ReBAC that allows changes of node attribute and edge attribute values

are attribute dynamic ReBAC. For example, consider Hobby is a node attribute of users in

a social network. Suppose Hobby(“Alice”)={gardening, painting}. Recently “Alice” gets

interested to do “knitting” and wants to change her hobby in the social network site. If the

system allows her to update her hobby as Hobby(“Alice”) = {gardening, painting, knitting}

then it is an attribute dynamic ReBAC.

• Relationship Dynamic: ReBAC that allows changes of relationships between entities (add

or delete edges in the relationship graph) is called relationship dynamic. Examples include

establishing a new relationship between two entities, or deleting an existing relationship

between two entities. We consider relationship dynamic to include attribute dynamic, since

for ReBAC models which have edge attributes adding a new relationship requires assignment

of attribute values of that edge.

• Node Dynamic: ReBAC that allows changes of entities is called as node dynamic ReBAC.

Some examples are creating or deleting a user or resource in a relationship graph. Here

we consider node creation implies possible relationship establishment and attribute value

assignments when ReBAC models have attributes for nodes and or edges. Hence, node

dynamic includes attribute dynamic (for some cases) and relationship dynamic.

Each ReBAC dynamic can be combined with any of the ReBAC structural models exclud-

ing ReBACB. ReBACB can only have static, relationship dynamic and node dynamic. However

ReBACB cannot have attribute dynamic as it doesn’t have any attributes. Thus, attribute dynamism

is irrelevant for ReBACB.

3.3 ABAC Classification

In this section, we develop a set of structural models for ABAC with capabilities to configure

the ReBAC models defined in Section 3.2. We define the ABAC models by considering attribute

types that are necessary to capture relationships and relationship graphs as shown in Figure 3.6(a).

28

Figure 3.6: ABAC Framework

Specifically, we consider entity and non-entity, finite and infinite domain, and atomic-valued, set-

valued and structured attributes. As shown in Figure 3.6(b), we also identify the dynamics of

ABAC models. While this is not the most general framework for ABAC, it facilitates comparative

analysis of relative expressiveness of ABAC and ReBAC.

Figure 3.6(a) depicts ABAC models with increasing capabilities as we go upwards in this

Hasse diagram. ABACN considers non-entity attributes only. According to our assumption 5

in Section 3.1, non-entity attribute cannot configure relationship composition, hence ABACN is

incomparable to ReBACB. ABACN can only have attributes such as name, gender, location etc.

ABACE considers entity attributes only and can configure ReBACB model which has multiple

relationship types and multiple entity types. Most of the ReBAC models fall under this category

[51, 52, 56, 67, 68]. For example, consider the system graph in Figure 3.2. To configure it with

ABACE we need the following.

• entity types = {user, project, file, directory}

• user attributes = {Participant-of, Supervises},

file attributes ={Resource-for, FileMember-of},

project attributes = {},

directory attributes ={DirectoryMember-of}.

ABACNE considers both entity and non-entity attributes which is similar to considering node

29

attributes along with multiple relationship types and multiple entity types as in ReBACBN. For

example, in Figure 3.2, suppose the user has attributes {name, gender, age} and files have attributes

{securityLabel, size}. Using ABACNE we can configure these node attributes with non-entity

attributes.

ABACES considers structured entity attributes which can configure relationships and edge at-

tributes of relationship graph. Figure 3.4 shows some simple edge attributes in relationship graphs.

To configure the relationship graph “Bob supervises Project1” in ABAC, we need to have entity

attribute “supervises” for user so we can express supervises (Bob)= {“Project1”}. In addition, to

express the edge attribute “assignedBy”, we will need a structured attribute of user “assignedBy”,

so we can express assignedBy(Bob) = (“Project1”,“supervises”, “Alice”). Here the sub-attributes

for “assignedBy” are (targetNode, relationshipType, assignedByUser). The same is true for the

tenantTrust relationship between tenant1 and tenant2. Here we can configure the trustValue with

structured attribute trustValue (tenant2) = (“tenant1”, ‘tenantTrust’, 0.5). Consider the example in

Figure 3.5 where the edge (u, r, UA) is dependent on edge (y, x, TT). This dependency can be rep-

resented using a structured attribute for edge. To configure this structured edge attribute in ABAC,

we need to have dependentEdge(u) = (“r”,“UA”, {(y,x,TT)}).

ABACNES considers entity and non-entity structured attributes which can configure relation-

ships, node attributes and edge attributes. This completes our discussion of Figure 3.6(a).

There are three types of ABAC systems in terms of possible changes, which we call ABAC

dynamics. Figure 3.6(b) shows the dynamics as follows.

• Static ABAC: Nothing gets changed. In this type of ABAC, everything is static. Change of

attribute values (i.e., assigning new values to attributes) or change of entities (i.e., adding or

deleting entities) are not allowed.

• Attribute Value Changes: This ABAC allows changes of attribute values (assigning new

values to attributes).

• Entity Changes: This ABAC allows new entity creation and/or deletion. We understand

30

Figure 3.7: Relationship Graph for Example 1

that entity changes also includes attribute value changes as it needs assigning new values to

attributes.

Each ABAC model shown in the Figure 3.6(a) can be combined with any dynamics shown in

Figure 3.6(b).

3.4 Expressing MultiLevel Relationships With Attributes

Entity attributes can directly configure one-level relationship such as parent, spouse, owner. Only

entity attribute is allowed for attribute function composition. ReBAC is all about expressing au-

thorization policy with multilevel or composite relationship (friend ◦ friend, friend ◦ parent etc.).

In this subsection, we propose two methods of composite relationship expression using attributes.

1. Attribute Composition or Chaining: Attribute chaining is exemplified by attribute func-

tion composition as defined in Section 3.1. Traditional ABAC uses direct attribute value of

a user to specify policy, while attribute chaining approach allows to specify a policy through

composition of attribute functions. This approach requires runtime computation for relation-

ship composition just like ReBAC.

2. Composite Attribute: In this approach, all possible or required paths of a relationship graph

are captured as attributes. When an update occurs in the relationship graph, this approach

needs to update attributes of directly and indirectly related entities. Here the terms possible

and required are used in the sense that the maximum possible depth of a graph depends upon

its size while required depth means the limited depth required to specify authorization policy.

We discuss both concepts with some examples below.

31

Figure 3.8: Relationship Graph for Example 2

Example 1: Consider the relationship graph in Figure 3.7. Let’s assume the policy for photo

only allows access by the owner or owner’s friend.

Attribute Composition or Chaining : To configure this scenario with attribute composition ap-

proach, each user should have two entity attributes “friend” and “owner” and the authorization

policy would check whether a particular user is in owner(“photo”) or friend(owner(“photo”)). Ac-

cording to this policy “Carol” and “Alice” can access “photo”, but “Bob” cannot. If “friend"

relationship between “Alice" and “Bob" is removed, it is necessary to update friend(“Bob") and

friend (“Alice").

Composite Attribute: In this approach, to express the relationship graph and policy, ABAC

should have user attributes, “friend” and “friendOfFriend”, as well as object (i.e., photo) attributes,

“owner”, “friendOfOwner” and “friendOfFriendOfOwner”. Here, “friendOfFriend”, “friendO-

fOwner” and “friendOfFriendOfOwner” are composite attributes. The authorization policy would

check whether a particular user is in owner(“photo”) or friendOfOwner(“photo”). Here, owner

(“photo”) = {“Carol”}, friendOfOwner(“photo”) = {“Alice”}, friendOfFriendOfOwner(“photo”)

= {“Bob”}, friendOfFriend(“Bob”) = {“Carol”}, friendOfFriend(“Carol”) = { “Bob”}. If “friend”

relationship between “Alice” and “Bob” is removed, it is necessary to update friend(“Bob”), friend

(“Alice”) and friendOfFriend(“Bob”). This action also requires indirect updates on friendOf-

Friend(“Carol”) and friendOfFriendOfOwner(“photo”).

Example 2: Consider Figure 3.8 where “Alice” has friends “Carol” and “Amy”. “Amy” and

“Carol” both have a common friend “John”. So “John” is Alice’s friend ◦ friend through “Carol”

32

Figure 3.9: Attribute Composition and Composite Attribute for the Relationship Graph of Exam-
ple 3

and “Amy”. Removing the relationship between “Amy” and “John” shouldn’t remove “John” from

“Alice”’s friendOfFriend list. This means, instead of simply storing friendOfFriend(“Alice”) =

{“John”}, we need to store friendOfFriend(“Alice”) = { “Amy.John”, “Carol.John”}. Storing such

path information as an attribute value would ensure availability of accurate attribute values. As

demonstrated in this example, it is often not sufficient to store only the end user information as an

attribute value in case composite attributes are used.

Example 3: Consider another example with the simple relationship graph shown in Figure 3.9.

Attribute Composition or Chaining: In this approach we need to have two entity attributes for

users, “friend” and “coworker”. To express a policy that verifies a composite relationship such as

friend ◦ friend, coworker ◦ friend or friend ◦ coworker, we can use attribute composition such as

friend(friend(“Alice”))= {“John”}, coworker(friend(“Alice”)) = {Bob}, and friend(coworker(“Bob”))

= {“John”}.

Composite Attribute: In this approach, we need to have “friend”, “coworker”, “friendOfFriend”,

“friendOfCoworker”, “coworkerOfFriend” as attributes, so we can express relationship paths that

might be found in policies without the use of chaining attributes. This approach has maximum

depth limit in expressing relationship based policy dependent on the attribute configuration. Ev-

ery entity attributes defined in this approach should have a fixed relationship depth. For exam-

ple “friend” and “coworker” express one level relationships while “friendOfFriend”, “friendOf-

33

Figure 3.10: Comparison Between ReBAC and ABAC with respect to Dynamics and Attribute
Domain

Coworker” and “coworkerOfFriend” express two level relationships.

3.5 Comparison: ABAC vs. ReBAC

In this section we compare ReBAC with ABAC, using the classifications of Sections 3.2 and 3.3.

We conduct a conceptual comparison using two metrics: i) dynamics and ii) structural models.

As the goal of this paper is to provide high level comparison, we do not provide any formally

defined models or policy specifications. In order to use the formal framework of [131] to compare

expressive power it is necessary to give detailed formal specifications of access control models.

This limits comparison results to the very specific models that have been fully specified. We rather

seek an intuitive but rigorous and insightful comparison between structurally comparable models.

In this work, we assume only entity attributes can configure relationships and non-entity at-

tributes are finite domain attributes. We have shown that multilevel relationships can be configured

with either attribute composition or with composite attributes. ReBAC node attributes can be

configured using ABAC atomic or set-valued, and entity or non-entity attributes. ReBAC edge

attributes can be configured using ABAC structured attributes of entities. From ReBAC point of

view, if ABAC has only non-entity attributes, it means ReBAC graph structure has disconnected

nodes with node attributes only. If ABAC has the capability to define entity attributes, it can be

34

Figure 3.11: Equivalence of ReBAC and ABAC Structural Classification

configured to express relationships. Structured entity attributes can be configured as atomic or

set-valued edge attributes or structured node attributes in relationship graph.

3.5.1 Comparison on Dynamics

Figure 3.10 shows a three-way alignment of ReBAC and ABAC dynamics with finite/infinite at-

tribute domains. We understand this alignment to mean the following. The statement that ABACX

is equivalent to ReBACY is to be interpreted as given below.

• Static and finite attribute domain ABACX is equivalent to static ReBACY.

• ABACX that allows change of attribute values with finite domain attribute is equivalent to

relationship dynamic (which includes attribute dynamic where it is applicable) ReBACY.

• ABACX that allows entity changes and infinite domain entity attribute is equivalent to node

dynamic ReBACY.

This alignment and interpretation allows us to avoid explicit consideration of all combinations of

dynamics and models, which would be overwhelming. It does impose an obligation to consider all

three levels of dynamics from Figure 3.10 in making equivalence claims.

We also have the following general result.

Theorem 1. Finite domain ABAC cannot configure ReBAC that changes entities in the relationship

35

graph (i.e., node dynamic ReBAC).

Proof. (Sketch) Entity changes in ReBAC entail creating new entities in the system and delet-

ing existing ones. In order to configure any kind of ReBAC we need entity attributes in ABAC.

Changes of entity from ReBAC requires changing the range of entity attribute for ABAC to poten-

tially unbounded size. A finite domain ABAC cannot have attributes that changes its range over

time in this manner.

3.5.2 Comparable Structural Models for ReBAC and ABAC

In this sub-section we compare the ReBAC and ABAC structural models from Figures 3.1(a) and

3.6(a) respectively. Figure 3.11 shows the equivalence of different ABAC and ReBAC models

(with blue dotted lines). Figure 3.12 shows the non-equivalence of different ABAC and ReBAC

models (purple dotted line shows one model is incomparable with another while green dotted line

shows one model is more expressive than another).

Theorem 2. ABACN is incomparable to ReBACB.

Proof. (Sketch) ABACN has only non-entity attributes which cannot configure relations as dis-

cussed earlier.

Theorem 3. ABACE and ReBACB are equivalent in expressive power.

Proof. (Sketch) To prove this we need to show

• ABACE can configure ReBACB

• ReBACB can configure ABACE

For the former, ABACE has entity attributes which can configure relationships via the techniques

discussed in Section 3.4. For the latter, ABACE can be expressed as ReBACB where the entity

attributes are relationship types and entities are nodes in the graph.

Corollary 1. ABACN is incomparable to ABACE

36

Figure 3.12: Non-Equivalence of ReBAC and ABAC Structural Classification

Proof. (Sketch) Theorem 2 proves that ABACN is incomparable to ReBACB and Theorem 3 proves

that ABACE and ReBACB are equivalent in expressive power. The corollary follows.

Theorem 4. ABACNE and ReBACBN have equivalent expressive power

Proof. (Sketch) With entity attributes ABACNE can configure relationships of ReBACBN and with

non-entity attributes ABACNE can configure non-entity node attribute of ReBACBN. So ABACNE

can configure ReBACBN. Conversely ReBACBN can express entity attributes as relationships and

non-entity attributes as node attributes in the relationship graph. So ReBACBN can configure

ABACNE.

Theorem 5. ABACE is less expressive than ReBACBE

Proof. (Sketch) Entity attributes of ABACE can be configured with relationships of ReBACBE. So

ReBACBE can configure ABACE. On the other hand we have seen in Section 3.3 that structured

attributes are required to configure edge attributes in ABAC. For example consider Figure 3.4

where “tenantTrust" has “trustValue" as edge attribute. Without structured entity attribute, ABACE

cannot configure this example of ReBACBE.

Theorem 6. ABACES is more expressive than ReBACBE

Proof. (Sketch) By definition ABACES has structured entity attributes while ReBACBE does not

have structured attributes. We have seen in section 3.3 with structured valued entity attribute

37

ABACES can configure relationships, nodes and atomic or set-valued edge attributes of ReBACBE.

So ABACES can configure ReBACBE. On the other hand ReBACBE cannot configure more than

one-level structured entity attributes because it can have only atomic or set valued edge attribute.

A 2-level structured entity attribute means at least one subattribute is also a structured attribute. So

ReBACBE cannot configure ABACES.

Theorem 7. ABACNES is more expressive than ReBACBNE

Proof. (Sketch) Essentially similar proof as the previous theorem.

Theorem 8. ABACNES and ReBACBNES have same expressive power

Proof. (Sketch) ABACNES has structured entity and non-entity attributes while ReBACBNES has

labeled relationship graph (multiple types of relationships) with multiple types of nodes (enti-

ties) and structured node and edge attributes. Section 3.3 has shown that ABACNES can configure

relationships, nodes and structured attributes for nodes and edges. So ABACNES can configure

ReBACBNES. On the other hand ReBACBNES can configure entities with nodes, structured entity

and non-entity attributes with structured entity and non-entity node attributes respectively. So

ReBACBNES can configure ABACNES. This proves that ABACNES and ReBACBNES have same ex-

pressive power.

3.5.3 Performance Comparison

So far we have considered the theoretical expressive power equivalence between ABAC and Re-

BAC. There are clearly some differences between them in terms of performance. ReBAC does

runtime computation of authorization. Even if relationship graph is static and nothing changes,

ReBAC still needs to repeat the same computation. To eliminate this massive redundant com-

putation load researchers have considered caching of relationship paths [55]. In Section 3.4 we

proposed two solutions for multilevel relationship expression in ABAC, viz., attribute composition

and composite attributes. Attribute composition is similar to ReBAC in expressing policy, while

composite attribute is more like caching of path information. Attribute composition has polynomial

38

complexity for authorization policy and constant complexity for update, on the other hand com-

posite attribute has constant complexity in policy authorization and polynomial time complexity

on update to maintain relationship changes.

Performance also depends upon the characteristics of the system. A number of variances re-

garding system characteristics such as relationship dynamics, node dynamics and density of rela-

tionships between nodes (entities) affect performance. For meaningful performance comparison

we need to formally define specific comparable models considering both approach, do their im-

plementation and configure the system for different dynamics (attribute dynamics, node dynamics,

relationship dynamics and density dynamics).

3.5.4 Choices Of Models

Attribute composition or ReBAC approach puts the load on runtime computation, while caching

or composite attribute may need significant update load. If relationship graph changes frequently,

the caching or composite attribute approach needs to have excessive updates to keep the path

information up-to-date.

The choice of models depends on node dynamics, relationship dynamics and the density of

relationships between nodes (entities) in the system. If the relationship density of a system is high,

adding or deleting a largely connected node will affect quite a large number of relationships in the

system. For a static system or a system with non-entity attribute change, regardless of whether the

graph is dense or sparse composite attribute is the best approach for relationship expression. If the

system has huge node dynamics and relationship dynamics, and relationship density is also high

attribute composition would be the best solution. If the system is in the middle between these two

extremes then we can think of an hybrid approach where both attribute composition and composite

attribute are used in the same model. For example to achieve p level relationship composition

we can use m level composite attribute and n level attribute composition where p = n × m. To

specify it more clearly we can say that a composite attribute with 4 level relationship expression

capability such as ffff(u) or an attribute composition with 4 level relationship expression capability

39

Figure 3.13: PEI Framework [114]

such as f(f(f(f(u)))) can be expressed with a composite attribute of 2 level relationship expression

capability using 2 level attribute composition ff(ff(u)). This means ffff(u) = f(f(f(f(u)))) = ff(ff(u)).

Application context for security has the well established 3 layers (Policy P, Enforcement E and

implementation I or PEI) [113, 114, 118], as shown in Figure 3.13. Policy level P is all about ex-

pressibility, modularity and convenience to express policy and independent of implementation de-

tail. From expressibility point of view both the approaches are equal as we have already shown the

equivalence of policy expression at the P layer. E layer is responsible for enforcement architecture

wherein performance would come into consideration. Depending on the dynamics characteristics

we conjecture that some hybrid combination of ABAC with attribute composition and composite

attribute would be optimal for most situations.

40

Chapter 4: SAFETY AND EXPRESSIVE POWER OF ABACα AND ITS

ENHANCEMENTS

This chapter analyzes the safety of an existing ABAC model, viz. ABACα [82], proposes two en-

hanced versions of ABACα, viz. ABACAM
α and ABACMI

α , and analyzes the decidability boundary

and comparative expressive power for these extensions. ABACAM
α maintains the safety decidabil-

ity result, while ABACMI
α is Turing complete and thereby has undecidable safety. This results

are developed by a comparative study with another existing attribute based access control model

UCONfinite
preA [107]. Precise expressive power comparison of ABACα and UCONfinite

preA is left open.

Figure 4.1 summarizes the central results of this chapter.

Figure 4.1: Comparison of ABACα and its Enhancements.

4.1 Safety of ABACα

Safety analysis is a fundamental problem for any access control model. Recently, it has been shown

that the pre-authorization usage control model with finite attribute domains, viz. UCONfinite
preA has

decidable safety [107]. ABACα is a pre-authorization model and requires finite attribute domains,

but is otherwise quite different from UCONfinite
preA . This section gives a state-matching reduction

from ABACα to UCONfinite
preA . The notion of state-matching reductions was defined by Tripunitara

41

and Li [131], as reductions that preserve security properties including safety. It follows that safety

of ABACα is decidable. The following first presents a reduction from ABACα to UCONfinite
preA then

proves that the reduction is state matching.

4.1.1 Reduction from ABACα to UCONfinite
preA

This subsection defines a reduction from ABACα to UCONfinite
preA . UCONfinite

preA PreConditions are

command specific boolean functions while ABACα policies are boolean expressions. For attribute

value update ABACα uses direct value from the range of the attribute while UCONfinite
preA uses value

computing functions (see Table 2.5) to compute the value of the attributes. To relate the machinery

of the two models we introduce some additional notations. One is policy evaluation functions

and sets of eligible attribute value tuples for creation and modification of subjects and objects

of ABACα. Another one is PreCondition evaluation functions of UCONfinite
preA . Policy evaluation

functions pre-evaluates the policies for a specific set of existing and proposed attribute value tuples

and return true or false. Set of eligible attribute value tuples are the authorized attribute value tuples

to do a certain operation, e.g. create/modify a subject or create/modify an object. This reduction

then defines a single UCONfinite
preA command for each element of eligible attribute value tuples set.

PreCondition evaluation function pre-computes precondition for a specific set of existing attribute

value, a specific command and a specific computed attribute value tuple, and returns true or false.

Policy Evaluation Functions for ABACα

Each Policy evaluation function evaluates corresponding policy and returns true or false.

Authorization Policy Evaluation Function: ChkAuth(p,savt, oavt) returns true or false. This

function evaluates the authorization policy Authorizationp to determine whether a subject with

attribute value savt is allowed to have permission p on an object with attribute value tuple oavt.

Creation and Modification Policy Evaluation Functions:

• ChkConstrSubCreatebyUser(uavt,savt) returns true or false. It evaluates the subject cre-

ation policy ConstrSubCreatebyUser as to whether a user with attribute value tuple uavt is

42

allowed to create a subject with attribute value tuple savt.

• ChkConstrSubModbyUser(uavt, savt1, savt2) returns true or false. It evaluates the subject

modification policy ConstrSubModbyUser as to whether a user with attribute value tuple

uavt is allowed to modify a subject with attribute value tuple savt1 to savt2.

• ChkConstrObjCreatebySub(savt, oavt) returns true or false. It evaluates the object creation

policy ConstrObjCreatebySub as to whether a subject with attribute value tuple savt is al-

lowed to create an object with attribute value tuple oavt.

• ChkConstrObjModbySub(savt, oavt1, oavt2) returns true or false. It evaluates the object

modification policy ConstrObjModbySub as to whether a subject with attribute value tuple

savt is allowed to modify an object with attribute value tuple oavt1 to oavt2.

Sets of Eligible Attribute Value Tuples

Using the policy evaluation functions for ABACα we define 4 eligible sets for attribute value tuples

as follows.

Definition 8. Set of user-subject-creatable-tuples

UAVTCrSAVT ⊆ UAVT × SAVT

UAVTCrSAVT = {〈i, j〉 | i ∈ UAVT ∧ j ∈ SAVT

∧ ChkConstrSubCreatebyUser(i,j)}

Definition 9. Set of user-subject-modifiable-tuples

UAVTModSAVT ⊆ UAVT × SAVT × SAVT

UAVTModSAVT = {〈i, j, k〉 | i ∈ UAVT ∧ j∈ SAVT

∧ k ∈ SAVT ∧ ChkConstrSubModbyUser(i,j,k)}

Definition 10. Set of subject-object-creatable-tuples

SAVTCrOAVT ⊆ SAVT × OAVT

SAVTCrOAVT = {〈i, j〉 | i ∈ SAVT ∧ j ∈ OAVT

∧ ChkConstrObjCreatebySub(i,j) }

43

Definition 11. Set of subject-object-modifiable-tuples

SAVTModOAVT ⊆ SAVT × OAVT × OAVT

SAVTModOAVT = {〈i, j, k〉 | i ∈ SAVT ∧ j ∈ OAVT

∧ k ∈ OAVT ∧ ChkConstrObjModbySub(i,j,k)}

PreCondition Evaluation Functions for UCONfinite
preA

PreCondition evaluation functions of UCONfinite
preA check the PreConditions of UCONfinite

preA com-

mands and return true or false.

• CheckPCNCR(ucr, avt1, avt2, avt3, avt4) returns true or false. It evaluates the PreCondi-

tion fb and PreUpdate of non-creating command ucr as to whether a subject with attribute

value tuple avt1 is allowed to execute command ucr on an object with attribute value tuple

avt2 and if allowed whether it modifies subject’s attribute value tuple from avt1 to avt3 and

object’s attribute value tuple from avt2 to avt4.

• CheckPCCR(ucr, avt1, avt2, avt3) returns true or false. It evaluates the PreCondition fb

and PreUpdate of creating command ucr as to whether a subject with attribute value tuple

avt1 is allowed to execute the command uc with right r and if allowed whether it creates an

object with attribute value tuple to avt2 and modifies it’s own attribute value tuple from avt1

to avt2.

Reduction from ABACα to UCONfinite
preA

The reduction is presented showing the configuration of UCONfinite
preA object schema, rights and

commands to simulate ABACα. Table 4.1 shows the reduction.

Object Schema of UCONfinite
preA : Every ABACα entity (user, subject, object) is represented as

a UCONfinite
preA object and the attribute entity_type specifies whether a particular UCONfinite

preA object

is an ABACα user, subject or object. User, subject and object attributes of ABACα are repre-

sented as UCONfinite
preA object attributes. There is no user creation in ABACα so UABACα is a finite

set. ABACα function SubCreator is configured here with a mandatory UCONfinite
preA object attribute

whose domain is the finite set of users (UABACα). To determine which user is the creator of an

44

Table 4.1: Reduction from ABACα to UCONfinite
preA

Object Schema(OS∆):
[entity_type:{user, subject, object}, user_name: UABACα , SubCreator: UABACα ,
isDeleted: {true,false}, ua1:Range(ua1), . . . , uam:Range(uam),
sa1:Range(sa1), . . . , san:Range(san), oa1:Range (oa1), . . . , oap: Range (oap)]
Attributes:
ATT = {entity_type, user_name, SubCreator, isDeleted}
∪ UAABACα ∪ SAABACα ∪ OAABACα

Usage Rights:
UR= PABACα ∪ {d}
Commands:
UCONfinite

preA commands are defined in Tables 4.2 and 4.3

ABACα subject, UCONfinite
preA object needs to have another mandatory attribute user_name whose

range is also the finite set UABACα . ABACα has a subject deletion operation. In [107] it is shown

that deletion of a subject can be simulated by using a special boolean attribute isDeleted which has

a boolean domain. We consider “NULL" as a special attribute value for any atomic or set valued

attribute. It is assigned to an attribute which is not appropriate for a particular entity. We need to

add “NULL" in the range of UA, SA and OA for this reduction. As there is no user deletion and ob-

ject deletion in ABACα, isDeleted would be “NULL" for both users and objects. The UCONfinite
preA

attribute set ATT is {entity_type, user_name, SubCreator, isDeleted} ∪ UAABACα ∪ SAABACα ∪

OAABACα .

UCONfinite
preA usage rights UR: In this reduction each ABACα permission is considered as a

usage right in UCONfinite
preA and additionally a dummy right d is introduced. Each UCONfinite

preA com-

mand associates with a right. We use dummy right d for association with the commands which are

defined to configure ABACα operations. The set of usage rights URUCONfinite
preA is thereby PABACα ∪

{d}.

UCONfinite
preA commands: ABACα operations are reduced to specific UCONfinite

preA commands.

A single ABACα operation requires definition of multiple UCONfinite
preA commands to account for

different attribute value combinations. The reduction defines a creating command for each element

of UAVTCrSAVT and SAVTCrOAVT, and a non-creating command for each element of UAVT-

ModSAVT and SAVTModOAVT. For example consider an ABACα subject creation policy where

a user u with attribute value tuple uavt is allowed to create a subject s with attribute value tuple

45

Table 4.2: UCONfinite
preA Creating Commands

For each 〈i, j〉∈ UAVTCrSAVT For each 〈i, j〉∈ SAVTCrOAVT
CreateSubjectbyUser_ijd(s, o) CreateObjectbySubject_ijd(s,o)

PreCondition: s.entity_type = user PreCondition: s.entity_type = subject
∧ 〈s.ua1, . . . , s.uam〉 = 〈i1, . . . , im〉 ∧ s.isDeleted = false

∧ 〈s.sa1, . . . , s.san〉 = 〈i1, . . . , in〉
PreUpdate: create o PreUpdate: create o

o.entity_type = subject o.entity_type = object
o.user_name = NULL o.user_name = NULL
o.SubCreator = s.user_name o.SubCreator = NULL
o.isDeleted = false o.isDeleted = NULL
o.ua1 = NULL o.ua1 = NULL
...

...
o.uam = NULL o.uam = NULL
o.sa1 = j1 o.sa1 = NULL
...

...
o.san = jn o.san = NULL
o.oa1 = NULL o.oa1 = j1
...

...
o.oap = NULL o.oap = jp

Table 4.3: UCONfinite
preA Non-Creating Commands

For each r ∈ URUCONfinite
preA \ {d} DeleteSubjectbyUserd(s, o)

Accessr(s, o) PreCondition: s.entity_type =user
PreCondition: ChkAuth(r,avtf(s),avtf(o)) ∧ o.entity_type = subject
PreUpdate: N/A ∧ o.SubCreator = s.user_name

∧ o.isDeleted = false
PreUpdate: o.isDeleted = true

For each 〈i, j, k〉∈ UAVTModSAVT For each 〈i, j, k〉∈ SAVTModOAVT
ModifySubjectAttbyUser_ijkd(s,o) ModifyObjectAttbySub_ijkd(s,o)

PreCondition: s.entity_type = user PreCondition: s.entity_type = subject
∧ o.entity_type = subject ∧ o.entity_type = object
∧ o.isDeleted = false ∧ s.isDeleted = false
∧ o.SubCreator = s.user_name ∧ 〈s.sa1, . . . , s.san〉 = 〈i1, . . . , in〉
∧ 〈s.ua1, . . . , s.uam〉 = 〈i1, . . . , im〉 ∧ 〈o.oa1, . . . , s.oap〉 = 〈j1, . . . , jp〉
∧ 〈o.sa1, . . . , s.san〉 = 〈j1, . . . , jn〉

PreUpdate: o.sa1 = k1 PreUpdate: o.oa1 = k1

...
...

o.san = kn o.oap = kp

46

savt, so by definition 〈uavt, savt〉 ∈ UAVTCrSAVT. For each element 〈i, j〉 ∈ UAVTCrSAVT

this reduction has a command named CreateSubjectbyUser_ij(s, o) which creates an object o with

entity_type = subject. There are no changes to the attributes of s while the attributes of the newly

created o are set to the values in j. This is shown on the left hand side of Table 4.2. The right hand

side of Table 4.2 similarly shows the UCONfinite
preA commands to simulate the ABACα object creation

by subject operation. Turning to Table 4.3 the top left quadrant shows the Access
UCONfinite

preA
r (s, o)

commands, each of which simulates the ABACα command AccessABACα
p (s, o) for r = p. There is

no PreUpdate in these commands. The top right quadrant of Table 4.3 shows the simulation of

the DeleteSubjectABACα(u, s) by DeleteSubject
UCONfinite

preA

d (s, o). The bottom half of Table 4.3 shows

the reduction of the ABACα modify attribute commands, by user (left side) and by subject (right

side). In both cases only the target’s attributes are modified with user (left side) or subject (right

side) attributes remaining unchanged as per ABACα semantics.

4.1.2 Safety of ABACα

In this subsection we show that safety of ABACα is decidable. We prove that the reduction pro-

vided in the previous subsection is state matching, so it preserves security properties including

safety. Decidable safety for ABACα then follows from decidable safety for UCONfinite
preA . In order

to show that a reduction from ABACα and UCONfinite
preA is state matching, we have to show the

following:

1. Represent ABACα and UCONfinite
preA models as ABACα and UCONfinite

preA schemes

2. Construct a mapping σABACα that maps ABACα to UCONfinite
preA

3. Prove that σABACα mapping from ABACα to UCONfinite
preA satisfies the following two require-

ments for state matching reduction:

(a) for every state γABACα
1 reachable from γABACα under the mapping σABACα there exists

a reachable state in UCONfinite
preA scheme that is equivalent (answers all the queries in the

same way)

47

(b) for every state γ
UCONfinite

preA

1 reachable from γUCONfinite
preA under the mapping σABACα there

exists a reachable state in ABACα scheme that is equivalent (answers all the queries in

the same way)

ABACα Scheme

An ABACα scheme consists of 〈ΓABACα , ΨABACα , QABACα , `ABACα〉. Where

• ΓABACα is the set of all states. Where each state γABACα ∈ ΓABACα is characterized by 〈 Uγ ,

Sγ , Oγ , UA, SA, OA, uavtf, savtf, oavtf, P, SubCreator〉 where Uγ , Sγ , Oγ are set of users,

subjects objects respectively in state γ.

• ΨABACα is the set of state transition rules which are all ABACα operations defined in Ta-

ble 2.4.

• QABACα is the set of queries of type:

1. Authorizationp(s, o) for p∈ PABACα , s∈ SABACα , o∈OABACα .

2. ConstrSubCreatebyUser(u, s, savt) for u ∈UABACα , s /∈ SABACα , savt ∈ SAVTABACα .

3. ConstrSubModbyUser(u, s, savt) for u ∈ UABACα , s ∈ SABACα , savt ∈ SAVTABACα .

4. ConstrObjCreatebySub(s, o, oavt) for s ∈ SABACα , o /∈ OABACα , oavt ∈ OAVTABACα .

5. ConstrObjModbySub(s, o, oavt) for s ∈ SABACα , o ∈ OABACα , oavt ∈ OAVTABACα .

• Entailment ` specifies that given a state γ ∈ ΓABACα and a query q ∈ QABACα , γ ` q if and

only if q returns true in state γ.

UCONfinite
preA Scheme

An UCONfinite
preA scheme consists of 〈ΓUCONfinite

preA , ΨUCONfinite
preA , QUCONfinite

preA , `UCONfinite
preA 〉, as follows.

• ΓUCONfinite
preA is the set of all states. Where each state γUCONfinite

preA ∈ ΓUCONfinite
preA is characterized

by 〈OSγ∆, UR,ATT,AV T, avtf〉. Here OSγ∆ is the object schema in state γ.

48

• ΨUCONfinite
preA is set of state transition rules which are the set of creating and non-creating com-

mands of UCONfinite
preA defined in Tables 4.2 and 4.3 respectively.

• QABACα is the set of queries and of following types:

1. CheckPCNCR(ucr, avtf(s), avtf(o), avt3, avt4) for ucr ∈ UC, r ∈ UR, s and o are

UCONfinite
preA objects.

2. CheckPCCR(ucr, avtf(s), avt2, avt3) for ucr ∈UC, r ∈UR, s is an UCONfinite
preA object.

• Entailment ` specifies that given a state γ ∈ ΓUCONfinite
preA and a query q ∈ QUCONfinite

preA , γ ` q if

and only if q returns true in state γ.

Mapping from ABACα to UCONfinite
preA (σABACα)

• Mapping of ΓABACα to ΓUCONfinite
preA

– Mapping of Object Schema(OS∆), ATT and UR is provided in Table 4.1

• Mapping of ΨABACα to ΨUCONfinite
preA

– σ(Accessp) = Access
UCONfinite

preA
r where r = p.

– σ(CreateSubjectbyUser(u, s, savt)) = CreateSubjectbyUser_ijd(s,o),

i = uavtf(u) and j = savt.

– σ(DeleteSubjectbyUser(u, s)) = DeleteSubjectbyUserd(s,o).

– σ(ModifySubjectAttbyUser(u, s, savt)) = ModifySubjectAttbyUser_ijkd(s,o),

i = uavtf(u) and j = savtf(s) and k = savt.

– σ(CreateObjectbySubject(s, o, oavt)) = CreateObjectbySubject_ijd(s,o),

i = savtf(s) and j = oavt.

– σ(ModifyObjectAttbySubject(s, o, oavt)) = ModifyObjectAttbySubject_ijkd(s,o),

i = savtf(s) and j = oavtf(o) and k = oavt.

49

• Mapping of QABACα to QUCONfinite
preA is provided below

– σ(Authorizationp(s, o)) = CheckPCNCR(Accessp, avtf(s), avtf(o), avtf(s), avtf(o)).

– σ(ConstrSubCreatebyUser(u, s, savt)) = CheckPCCR(CreateSubjectbyUser_ijd, avtf(s),

avtf(s), 〈 subject, NULL, u, false, NULL,. . . , NULL, savt1, . . . savtn, NULL,. . . ,

NULL 〉) where i = uavtf(u) and j = savt.

– σ(ConstrSubModbyUser(u, s, savt))= CheckPCNCR(ModifySubjectAttbyUser_ijkd,

avtf(s), avtf(o), avtf(s), 〈 savt1, . . . savtn 〉) where i = uavtf(u), j = savtf(s) and k =

savt.

– σ(ConstrObjCreatebySub(s, o, oavt)) = CheckPCCR(CreateObjectbySubject_ijd, avtf(s),

o, avtf(s), 〈 object, NULL, NULL, NULL, NULL,. . . , NULL, NULL,. . . , NULL,

oavt1, . . . oavtp 〉) where i = savtf(s) and j = oavt.

– σ(ConstrObjModbySub(s, o, oavt))= CheckPCNCR(ModifyObjectAttbySubject_ijkd,

avtf(s), avtf(o), avtf(s), 〈 oavt1, . . . oavtp 〉) where i = savtf(s), j = oavtf(o) and k =

oavt.

Proof that σABACα is State-Matching

The proof that the mapping provided above is a state matching reduction is lengthy and tedious.

Here we present an outline of the main argument.

Lemma 1. σABACα satisfies assertion 1 of the state matching reduction of Definition 1.

Proof. (Sketch): Assertion 1 requires that, for every γABACα ∈ ΓABACα and every ψABACα ∈

ΨABACα , 〈 γABACα , ψABACα 〉 = σ (〈 γABACα , ψABACα 〉) has the following property:

For every γABACα
1 in scheme ABACα such that

γABACα ∗−→ψABACα γ
ABACα
1 ,

there exists a state γ
UCONfinite

preA

1 such that

1. γUCONfinite
preA (=σ(γABACα)) ∗−→

ψ
UCONfinite

preA (=σ(ψABACα))
γ

UCONfinite
preA

1 .

50

2. for every query qABACα ∈QABACα , γABACα
1 `ABACα qABACα if and only if γ

UCONfinite
preA

1 `UCONfinite
preA

σ(qABACα). It can be decomposed into two directions:

(a) The “if" direction:

γ
UCONfinite

preA

1 `UCONfinite
preA σ(qABACα) => γABACα

1 `ABACα qABACα .

(b) The “only if" direction:

γABACα
1 `ABACα qABACα => γ

UCONfinite
preA

1 `UCONfinite
preA σ(qABACα).

The proof is by induction on number of steps n in γABACα ∗−→ψABACα γ
ABACα
1 .

Lemma 2. σABACα satisfies assertion 2 of the state matching reduction of definition 1.

Proof. (Sketch): Assertion 2 requires that, for every γABACα ∈ ΓABACα and every ψABACα ∈

ΨABACα , 〈 γABACα ,ψABACα 〉 = σ (〈 γABACα ,ψABACα〉) has the following property:

For every γ
UCONfinite

preA

1 in scheme UCONfinite
preA such that γUCONfinite

preA (=σ(γABACα)) ∗−→
ψ

UCONfinite
preA (=σ(ψABACα))

γ
UCONfinite

preA

1 , there exists a state γABACα
1 such that

1. γABACα ∗−→ψABACα γ
ABACα
1 .

2. for every query qABACα ∈ QABACα , γABACα
1 `ABACα qABACα

if and only if γ
UCONfinite

preA

1 `UCONfinite
preA σ(qABACα).

It can be decomposed into two directions:

(a) The “if" direction:

γ
UCONfinite

preA

1 `ABACα σ(qABACα) => γABACα
1 `ABACα qABACα .

(b) The “only if" direction:

γABACα
1 `ABACα qABACα => γ

UCONfinite
preA

1 `UCONfinite
preA σ(qABACα).

The proof is by induction on number of steps n in γUCONfinite
preA (=σ(γABACα)) ∗−→

ψ
UCONfinite

preA (=σ(ψABACα))

γ
UCONfinite

preA

1 .

51

Theorem 9. σABACα is a state matching reduction.

Proof. Lemma 3 shows that σABACα satisfies assertion 1 of Definition 1 and Lemma 4 shows that

σABACα satisfies assertion 2 of Definition 1. Thereby, σABACα is a state matching reduction.

Theorem 10. Safety of ABACα is decidable.

Proof. Safety of UCONfinite
preA is decidable [107]. Theorem 9 proved there exists a state matching

reduction from ABACα to UCONfinite
preA . A state matching reduction preserves security properties

including safety [131].

4.2 Safety and Expressive Power of a UCONfinite
preA Equivalent ABACα En-

hancement

ABACα and UCONfinite
preA are both attribute based pre-authorization models which have finite at-

tribute domain and unbounded creation of subjects and objects. However there are significant

differences between them such as clear distinction between user and subject, subject capabil-

ity to create and modify another subject or modify itself, attribute mutability, and strong cou-

pling between authorization and update. This section proposes an enhancement of ABACα, viz.,

ABACAM
α . It provides state-matching reductions from ABACAM

α to UCONfinite
preA and vice versa.

Thereby, ABACAM
α and UCONfinite

preA are equivalent in expressive power and safety of ABACAM
α is

also decidable.

4.2.1 ABACAM
α Model

In this subsection we define an extension of ABACα with subject attribute mutability during cre-

ation and modification of subjects, and capability for subjects to create and modify subjects (in-

cluding self-modification). We name this extended model as ABACAM
α . ABACAM

α has the same

basic sets and functions as ABACα and we use the same notation for attribute value tuples. The

main difference between ABACα and ABACAM
α are in their creation, modification and deletion

policies, policy configuration points and operational functionalities. An ABACα subject can only

52

Table 4.4: ABACAM
α Formal Model

Basic Sets and Functions
U, S, O, UA, SA, OA, SCOPE, Range, UAVT, SAVT, OAVT, uavtf, savtf, oavtf are same as ABACα
Authorization Policy

• Authorization on Object
Same as ABACα

• Authorization on Subject
For each p∈ P, AuthorizationonSubjectp(s1,s2) returns true or false.
Specified by LAuthorizationonSubject

Creation, Deletion and Modification Policy
Subject Creation Policy:

• Subject Creation by User
Same as ABACα

• Subject Creation by Subject
ConstrSubCreatebySub(s1:S,s2:S,savt1:SAVT,savt2:SAVT) returns true or false.
Specified by LConstrSubCreatebySub

Subject Deletion Policy:

• Subject Deletion by User
ConstrSubDelbyUser(u, s) returns true or false.
Specified by LConstrSubDelbyUser

• Subject Deletion by Subject
ConstrSubDelbySub(s1, s2, savt) returns true or false.
Specified by LConstrSubDelbySubject

Subject Modification Policy:

• Subject Modification by User (with mutability)
ConstrSubModbyUser(u:U,s:S, uavt:UAVT, savt:SAVT) returns true or false.
Specified by LConstrSubModbyUser.

• Subject Modification by Subject (with mutability)
ConstrSubModbySub(s1:S,s2:S,savt1:SAVT, savt2:SAVT) returns true or false.
Specified by LConstrSubModbySub.

Object Creation Policy:

• Object Creation by Subject
Same as ABACα

Object Modification Policy:

• Object Modification by Subject
Same as ABACα

Policy Language
Each policy language is an instantiation of the Common Policy Language CPL (defined in Table 2.2) that
varies only in the values it can compare. Table 4.5 specifies the set and atomic instantiation of LAutho-
rizationonSubject, LConstrSubCreatebySub, LConstrSubDelbyUser, LConstrSubDelbySub, LConstrSub-
ModbyUser, LConstrSubModbySub.
Functional Specification
ABACAM

α operations are specified in Table 4.6

53

be created by a user and be modified only by the creating user. An ABACAM
α subject, in addition,

can be created by another subject and can be modified by itself or another subject. The feature

that a subject’s own attributes are changed when that subject creates or modifies another subject, is

called mutability. ABACAM
α introduces authorization on subject on top of ABACα’s authorization

on objects. Table 4.4 provides the formal definition of ABACAM
α . In ABACAM

α formal model com-

ponents U, S, O, UA, SA, OA, UAVT, SAVT, P, SubCreator have the same definition as ABACα.

When a subject creates another subject, the creator of the creating subject is considered as the

creator of new subject (which will be a user).

Authorization Policy

ABACAM
α authorization policy consists of a single authorization policy on object for each permis-

sion and a single authorization policy on subject on each permission. Permissions and authorization

policy on an object are same as ABACα. Each authorization policy on subject takes a permission

and two subjects as input and returns true or false based on the boolean expression defined on the

attributes of those subjects.

Creation, Modification and Deletion Policy

Subject creation, object creation and object modification policies are same as ABACα which has

been defined in Chapter 2, Section 2.1.1. CPL is same as ABACα for all the languages defined in

Table 2.2. Subject creation by subject, subject modification by user, and subject modify by subject

policies, consider mutability with boolean expressions and defined using LConstrSubCreatebySub,

LConstrSubModbyUser and LConstrSubModbySub respectively. LConstrSubCreatebySub is a

CPL instantiation where set and atomic refers to the set and atomic valued existing attribute value

of creating subject and proposed attribute value for creating subject and subject to be created.

LConstrSubModbyUser is a CPL instantiation where set and atomic refers to the set and atomic

valued existing and proposed attribute of concerned user and subject. LConstrSubModbySub is a

CPL instantiation where set and atomic refers to the set and atomic valued existing and proposed

54

Table 4.5: Definition of added Language for ABACAM
α

Language set atomic

LAuthorizationonSubject setsa(s1) | setsa(s2) atomicsa(s1) | atomicsa(s2)
LConstrSubCreatebySub setsa(s1) | setsa′(s1) | setsa′(s2) atomicsa(s1) | atomicsa′(s1) | atomicsa′(s2) |
LConstrSubDelbyUser setua(u) | setsa(s) atomicua(u) | atomicsa(s)
LConstrSubDelbySubject setsa(s1) | setsa′(s1) | setsa(s2) atomicsa(s1) | atomicsa′(s1) | atomicsa(s2)
LConstrSubModbyUser setua(u) | setsa(s) | setua′(u) | setsa′(s) atomicua(u) | atomicsa(s) | atomicua′(u)

|atomicsa′(s)|
LConstrSubModbySub setsa(s1) | setsa(s2)| setsa′(s1) |

setsa′(s2)
atomicsa(s1) | atomicsa(s2)| atomicsa′(s1) |
atomicsa′(s2)

Table 4.6: Functional Specification for ABACAM
α .

Operations Conditions Updates Change rela-
tive
to ABACα

Accessp(s, o)

same as ABACα same as ABACα same as ABACα
CreateSubjectbyUser
CreateObjectbySubject
ModifyObjectAttbySubject
DeleteSubjectbyUser s∈S ∧ u∈U ∧ Extended
(u,s:NAME) SubCreator(s) = u Same as ABACα from ABACα

∧ ConsSubDelbyUser(u,s)
ModifySubjectAttbyUser s∈S ∧ u∈U ∧ SubCreator(s)=u ∧ uavtf(u) = uavt
(u,s,uavt:UAVT,savt:SAVT) ConstrSubMutable(u,s,uavt,savt) savtf(s) = savt

AccessSubjectp(s1,s2) AuthorizationOnSubjectp(s1, s2)
Newly added

CreateSubjectbySubject(s1, ConstrSubCreatebySub(s1,s2, S′ = S ∪ s2

s2:NAME,savt1:SAVT, savt1, savt2)∧ SubCreator(s2) = SubCreator(s1)
savt2:SAVT) s1 ∈ S ∧ s2 6∈ S savtf(s1) =savt1

savtf(s2) = savt2
DeleteSubjectbySubject s1∈S ∧ s2∈S ∧ S′ = S\{s2}
(s1,s2:NAME,savt) SubCreator(s1) = SubCreator(s2) savtf(s1)= savt

∧ ConsSubDelbySubject(s1,s2, savt)
ModifySubjectAttbySubject s1 ∈ S ∧ s2 ∈ S ∧ savtf(s1) = savt1
(s1,s2, savt1:SAVT, ConstrSubModbySub(s1,s2, savtf(s2) = savt2
savt2:SAVT) savt1, savt2)∧

SubCreator(s1) = SubCreator(s2)

attribute of concerned subjects. Subject deletion by user and subject deletion by subject is defined

using LConstrSubDelbyUser and LConstrSubDelbySub respectively. LConstrSubDelbyUser is a

CPL instantiation where set and atomic refers to the set and atomic valued existing attributes of

user and subject. LConstrSubDelbySub is a CPL instantiation where set and atomic refers to the

set and atomic valued existing attributes of concerned subjects and set or atomic valued proposed

attributes of deleting subject.

Table 4.5 shows the set and atomic instantiation for LAuthorizationonSubject, LConstrSub-

ModbyUser, LConstrSubCreateBySub, LConstrSubModbySub, LConstrSubDelbyUser, LConstr-

SubDelbySub.

55

Functional Specification

ABACAM
α functional specifications has 10 operations: access a subject or an object by a subject,

creation of subject by user or another subject, modification of subject attributes by user or another

subject or by itself, deletion of subject by user or by another subject, creation of object and modi-

fication of object attributes by subject. Table 4.6 gives the functional specifications of ABACAM
α .

Here access an object by a subject, creation of subject by user, creation or modification of object

by subject are same as ABACα. Modification of subject by user, deletion of subject by user are

extended from ABACα. Subject access, creation, modification and deletion by subject are newly

added operations on top of ABACα.

4.2.2 Reductions

In this subsection we define two reductions: 1) ABACAM
α to UCONfinite

preA and 2) UCONfinite
preA to

ABACAM
α .

Reduction from ABACAM
α to UCONfinite

preA :

This construction is similar to the construction provided in subsection 4.1.1. UCONfinite
preA Pre-

Conditions are command specific boolean functions while ABACAM
α policies are boolean ex-

pressions. For attribute value update ABACAM
α uses direct value from the range of the attribute

while UCONfinite
preA uses value computing functions (see Table 2.5) to compute the value of the at-

tributes. Here we need to introduce similar notations defined in 4.1.1 to relate the machinery of

both the models. Here policy evaluation functions pre-evaluates the boolean expression of differ-

ent ABACAM
α policies for a specific set of existing and proposed attribute value tuples and returns

true or false. It then construct eligible sets of tuples for creation and modification of subjects and

objects and deletion of subjects for which the policy evaluation function is true. For each element

in the eligible set this construction defines a corresponding UCONfinite
preA command. It also defines

PreCondition evaluation functions which pre-compute the PreConditions and attribute value com-

puting functions (f1, f2) for a specific set of attribute value tuples and for a specific UCONfinite
preA

56

command and returns true or false. These additional notations and data structures enable us to

relate the machinery of these two models.

Policy Evaluation Functions:

Each Policy evaluation function evaluates corresponding policy and returns true or false.

Authorization Policy Evaluation Functions:

• ChkAuth(savt, oavt) checks for pre-computed policy subject access object and returns true

or false.

• ChkAuthSub(savt1, savt2) checks the for pre computed policy subject access subject and

returns true or false.

Creation and Modification Policy Evaluation Functions:

• ChkConstrSubCreatebyUser(uavt,savt) checks for pre-computed policy subject creation by

user and returns true or false.

• ChkConstrSubCreatebySub(savt1, savt2, savt3) checks for pre-computed policy subject

creation by subject and returns true or false.

• ChkConstrSubDelbyUser(uavt, savt) checks for pre computed policy subject deletion by

user and returns true or false.

• ChkConstrSubDelbySub(savt1, savt2, savt1) checks for pre computed policy subject dele-

tion by subject and returns true or false.

• ChkConstrSubModbyUser(uavt1, savt1, uavt2, savt2) checks for pre computed policy sub-

ject attribute modification by user and returns true or false.

• ChkConstrSubModbySub(savt1),savt2), savt3, savt4)checks for pre computed policy sub-

ject attribute modification by subject and returns true or false.

• ChkConstrObjCreatebySub(savt, oavt) checks for pre computed policy object creation by

subject and returns true or false.

57

Table 4.7: Reduction from ABACAM
α to UCONfinite

preA

Object Schema(OS∆):
[entity_type:{user, subject, object}, user_name: UABACAM

α , SubCreator: UABACAM
α ,

ua1:Range(ua1), . . . , uam:Range(uam),
sa1:Range(sa1), . . . , san:Range(san), oa1:Range (oa1), . . . , oap: Range (oap)]
Attributes:
ATT = {entity_type, user_name, SubCreator}
∪ UAABACAM

α ∪ SAABACAM
α ∪ OAABACAM

α

Usage Rights:
UR= PABACAM

α ∪ {d}
Commands:
UCONfinite

preA commands are defined in Table 4.8, 4.9 and 4.10

• ChkConstrobjModbySub(savt1, oavt1, oavt2) checks for pre computed policy object attribute

modification by subject and returns true or false.

Sets of Eligible Attribute Value Tuples

Using the policy evaluation functions for ABACα we define 4 eligible sets for attribute value tuples

as follows.

Definition 12. Set of user-subject-creatable-tuples

UAVTCrSAVT ⊆ UAVT × SAVT

UAVTCrSAVT ={〈i, j〉 | i ∈ UAVT ∧ j ∈ SAVT

∧ ChkConstrSubCreatebyUser(i,j)}

Definition 13. Set of subject-subject-creatable-tuples

SAVTCrSAVT ⊆ SAVT × SAVT × SAVT

SAVTCrSAVT ={〈i, j, k〉 | i ∈ SAVT ∧ j ∈ SAVT

∧ k ∈ SAVT ∧ ChkConstrSubCreatebySub(i,j,k)}

Definition 14. Set of user-subject-deletable-tuples

UAVTDelSAVT ⊆ UAVT × SAVT

UAVTDelSAVT ={〈i, j〉 | i ∈ UAVT ∧ j ∈ SAVT

∧ ChkConstrSubDelbyUser(i,j)}

Definition 15. Set of subject-subject-deletable-tuples

58

SAVTDelSAVT ⊆ SAVT × SAVT × SAVT

SAVTDelSAVT ={〈i, j, k〉 | i ∈ SAVT ∧ j ∈ SAVT

∧ k ∈ SAVT ∧ ChkConstrSubDelbySub(i,j,k)}

Definition 16. Set of user-subject-modifiable-tuples

UAVTModSAVT ⊆ UAVT × UAVT × SAVT × SAVT

UAVTModSAVT={〈i, j, k, l〉 | i ∈ UAVT ∧ j∈ UAVT

∧ k ∈ SAVT ∧ l ∈ SAVT

∧ ChkConstrSubModbyUser(i, j, k, l)}

Definition 17. Set of subject-subject-modifiable-tuples

SAVTModSAVT ⊆ SAVT × SAVT × SAVT × SAVT

SAVTModSAVT={〈i, j, k, l〉 | i ∈ SAVT ∧ j∈ SAVT

∧ k ∈ SAVT ∧ l ∈ SAVT

∧ChkConstrSubModBySub(i, j, k, l)}

Definition 18. Set of subject-object-creatable-tuples

SAVTCrOAVT ⊆ SAVT × OAVT

SAVTCrOAVT ={〈i, j〉 | i ∈ SAVT ∧ j ∈ OAVT

∧ ChkConstrObjCreatebySub(i, j) }

Definition 19. Set of subject-object-modifiable-tuples

SAVTModOAVT⊆ SAVT × OAVT × OAVT

SAVTModOAVT ={〈i, j, k〉 | i ∈ SAVT ∧ j ∈ OAVT

∧ k ∈ OAVT ∧ ChkConstrObjModbySub(i,j,k)}

PreCondition Evaluation Functions for UCONfinite
preA

• CheckPCNCR(ucr, avt1, avt2, avt3, avt4) checks non creating command and returns true

or false.

• CheckPCCR(ucr, avt1, avt2, avt3) checks creating command and returns true or false.

59

• CheckPCDel(ucr, avtf(s), avtf(o), avt) checks deleting command and returns true or false.

Object Schema of UCONfinite
preA : Every ABACAM

α entity (user, subject, object) is represented as

a UCONfinite
preA object and the attribute entity_type specifies whether a particular UCONfinite

preA object is

ABACAM
α user, subject or object. User, subject and object attributes of ABACAM

α are represented

as UCONfinite
preA object attributes. There is no user creation in ABACAM

α , so UABACAM
α is a finite set.

ABACAM
α function SubCreator is configured here with a mandatory UCONfinite

preA object attribute

whose domain would be finite set of users (UABACAM
α). To determine which user is the creator

of an ABACAM
α subject, UCONfinite

preA object needs to have another mandatory attribute user_name

whose range is also finite set of users (UABACAM
α). We consider “NULL" as a special attribute

value for any atomic or set valued attribute. It is assigned to an attribute which is not appropriate

for a particular entity. We need to add “NULL" in the range of UA, SA and OA for this reduction.

UCONfinite
preA attribute set ATT = {entity_type, user_name, SubCreator} ∪ UAABACAM

α ∪ SAABACAM
α

∪ OAABACAM
α .

UCONfinite
preA usage rights UR: In this reduction each ABACAM

α permission is considered as

a usage right in UCONfinite
preA and additionally a dummy right d is introduced. Each UCONfinite

preA

command associates with a right. We use dummy right d for association with the commands

which are defined to configure ABACAM
α operations. Usage Right URUCONfinite

preA = PABACAM
α ∪ {d}.

UCONfinite
preA commands: ABACAM

α operations are reduced to specific UCONfinite
preA commands.

We use the sets of eligible attribute value tuples to define UCONfinite
preA commands. It defines a creat-

ing command for each element of UAVTCrSAVT, SAVTCrSAVT, SAVTCrOAVT , a non-creating

command for each element of UAVTModSAVT, SAVTModSAVT and SAVTModOAVT and a

deleting command for each UAVTDelSAVT, SAVTDelSAVT. For example consider an ABACAM
α

subject creation policy where a user u with attribute value tuple uavt is allowed to create a subject

s with attribute value tuple savt, so by definition 〈uavt, savt〉 ∈ UAVTCrSAVT. For each element

〈i, j〉 ∈ UAVTCrSAVT this reduction has a command named CreateSubject_ij(s, o) which creates

an object o with entity_type = subject. This is shown in top left quadrant of Table 4.8. The top right

quadrant of Table 4.8 shows the reduction of ABACAM
α operation CreateSubjectbySubjectABACAM

α

60

Table 4.8: UCONfinite
preA Creating Commands

For each 〈i, j〉∈ UAVTCrSAVT For each 〈i, j, k〉∈ SAVTCrSAVT
CreateSubjectbyUser_ijd(s, o) CreateSubjectbySubject_ijkd(s, o)

PreCondition: s.entity_type = user PreCondition: s.entity_type = subject
∧ s.ua1 = i1 ∧ . . . ∧ s.uam = im ∧ s.sa1 = i1 ∧ . . . ∧ s.san = in

PreUpdate: create o PreUpdate: create o
o.entity_type = subject o.entity_type = subject
o.user_name = NULL o.user_name = NULL
o.SubCreator = s.user_name o.SubCreator = s.SubCreator
o.ua1 = NULL o.ua1 = NULL
...

...
o.uam = NULL o.uam = NULL
o.sa1 = j1 o.sa1 = k1

...
...

o.san = jn o.san = kn
o.oa1 = NULL o.oa1 = NULL
...

...
o.oap = NULL o.oap = NULL

s.sa1 = j1
...

s.san = jn
For each 〈i, j〉∈ SAVTCrOAVT
CreateObjectbySub_ijd(s,o)

PreCondition: s.entity_type = subject
∧ s.sa1 = i1 ∧ . . . ∧ s.san = in

PreUpdate: create o
o.entity_type = object
o.user_name = NULL
o.SubCreator = NULL
o.ua1 = NULL
...
o.uam = NULL
o.sa1 = NULL
...
o.san = NULL
o.oa1 = j1
...
o.oap = jp

61

Table 4.9: UCONfinite
preA Non-Creating Commands

for each r ∈ URUCONfinite
preA \ {d} for each r ∈ URUCONfinite

preA \ {d}
Accessr(s, o) AccessSubjectr(s, o)

PreCondition: s.entity_type = subject∧ o.entity_type
= object ∧ ChkAuth(r,avtf(s),avtf(o))

PreCondition: s.entity_type = subject∧ o.entity_type
= subject ∧ ChkAuthSubject(r,avtf(s),avtf(o))

PreUpdate: N/A PreUpdate: N/A
For each 〈i, j, k, l〉∈ UAVTModSAVT For each 〈i, j, k, l〉∈ SAVTModSAVT
ModifySubjectAttbyUser_ijkld(s,o) ModifySubjectAttbySub_ijkld(s,o)

PreCondition: s.entity_type = user ∧ o.entity_type =
subject

PreCondition: s.entity_type = subject∧ o.entity_type
= subject

∧ o.SubCreator = s.user_name s.SubCreator = o.SubCreator
∧ s.ua1 = i1 ∧ . . . ∧ s.uam = im ∧ s.sa1 = i1 ∧ . . . ∧ s.san = in
∧ o.sa1 = k1 ∧ . . . ∧ o.san = kn ∧ o.sa1 = k1 ∧ . . . ∧ s.san = kn

PreUpdate: s.ua1 = j1 PreUpdate: s.sa1 = j1
...

...
s.uam = jm s.san = jn
o.sa1 = l1 o.sa1 = l1
...

...
o.san = ln o.san = ln

For each 〈i, j, k〉∈ SAVTModOAVT
ModifyObjectAttbySub_ijkd(s,o)

PreCondition: s.entity_type = subject∧ o.entity_type
= object
∧ s.sa1 = i1 ∧ . . . s.san = in
∧ o.oa1 = j1 ∧ . . . s.oap = jp

PreUpdate: o.oa1 = k1

...
o.oap = kp

(s1, s2, savt1, savt2) by UCONfinite
preA commands CreateSubjectbySubject_ijkd(s, o). The bottom left

quadrant shows the reduction of ABACAM
α operation create object by subject. Each Access

UCONfinite
preA

r

(s, o) configures AccessABACAM
α

p (s, o) where r = p. Here Access
UCONfinite

preA
r is a non-creating com-

mand with PreCondition part only and PreCondition checks the authorization evaluation function

of ABACAM
α . This is shown on the top left hand side of Table 4.9. There is no PreUpdate in

these commands. The top right hand side of Table 4.9 similarly shows the UCONfinite
preA commands

to simulate the ABACAM
α command AccessSubjectABACAM

α
p (s1, s2) for r = p. The middle row left

column of Table 4.9 the simulation of the ModifySubjectAttbyUserABACAM
α (u, s, uavt, savt) by

ModifySubjectAttbyUser_ijkl
UCONfinite

preA

d (s, o). The middle row right column of Table 4.9 shows the

reduction of the ABACAM
α modify subject attribute by subject while bottom row left column of

same Table shows the reduction of ABACAM
α modify object attribute by subject. Table 4.10 shows

62

the reduction of ABACAM
α deleting commands by user (left) and by subject (right).

Table 4.10: UCONfinite
preA Deleting Commands

For each 〈i, j〉∈ UAVTDelSAVT For each 〈i, j, k〉∈ SAVTDelSAVT
DeleteSubbyUser_ijd(s,o) DeleteSubbySub_ijkd(s,o)

PreCondition: s.entity_type = user PreCondition: s.entity_type = subject
∧ o.entity_type = subject ∧ o.entity_type = subject

∧ s.ua1 = i1 ∧ . . . ∧ s.uam = im ∧ s.ua1 = i1 ∧ . . . ∧ s.uam = in
∧ o.sa1= j1 ∧ . . . ∧ o.san = jn ∧ o.sa1 = j1 ∧ . . . ∧ o.san = jn

PreUpdate: delete o PreUpdate: delete o
s.sa1 = k1

...
s.san = kn

Reduction from UCONfinite
preA to ABACAM

α

In this subsection we provide a reduction from UCONfinite
preA to ABACAM

α . Before going to detail

about the construction here we give the high light of how this construction works.

Construction Outline

• This construction only does sequential simulation. No simultaneous access is possible.

• To ensure the sequential access there is a single user in the system who sets a subject token

and its own token before attempting the access and takes back that token after the access or

after denial of access.

• This construction has only one user and no objects. Set of subjects should be initialized with

UCONfinite
preA objects.

• Subject creation, deletion by user and object creation, modification, access by subject is not

allowed. The policies of those operations are set as false for this construction.

• The only allowed operations are subject modification by user, subject creation, modification,

deletion and access by subject.

• A single UCONfinite
preA command is configured with a sequence of ABACAM

α operations. Each

operation changes the state. To track the change of state we are using one user attribute (uTo-

63

ken) and 8 subject attributes (sToken, comm, commType, newV al1, newV al2, isAuthz,

isPassed, isRlsdToken). State tracking attributes are additional subject attributes on top

of the UCONfinite
preA object attributes.

• UCONfinite
preA preconditions (fb(s, o), fb(s))are command specific boolean functions which use

existing attribute value of subjects. On the other hand ABACAM
α policies are configurable

boolean expressions which can use existing and proposed attribute values of concerned enti-

ties. UCONfinite
preA uses function f1(s,o)/ f1(s) and f2(s,o)/ f2(s) to compute the proposed value

for the subjects and/ target subject. While ABACAM
α supports attribute value to be supplied

directly from the range of a specific attribute. To convert the command specific boolean

functions and f1(s,o)/ f1(s) and f2(s,o)/ f2(s) into a configurable boolean expression this con-

struction takes the following steps:

1. Pre-computes preconditions and f1 and f2 for all the commands and for all possible

existing attribute value tuples and proposed attribute value tuples for source and target

subjects and stores in a truth table. So there are three truth tables for three types of

command non-creating, creating and deletion.

2. Constructs a conjunctive normal form (CNF) for every true rows of the truth table and

make a boolean expression by disjunction of all the CNFs. This boolean expression is

used in configuring ABACAM
α policies for corresponding operations.

Construction Detail

For this configuration we have only one user u1, objects of UCONfinite
preA are mapped as subjects

of ABACAM
α and there are no objects in ABACAM

α . Rights of UCONfinite
preA are mapped as permis-

sions of ABACAM
α . There is only one user attribute uToken and no object attributes. Subjects have

eight additional attributes (sToken, comm, commType, newV al1, newV al2, isAuthz, isPassed,

isRlsdToken) along with all the UCONfinite
preA object attributes. Table 4.11 shows the reduction of

basic sets and functions from UCONfinite
preA to ABACAM

α . uToken and sToken specify the user

token and subject token respectively. comm and commType specify the command name and

64

Table 4.11: Basic Sets and Functions Reduction from UCONfinite
preA to ABACAM

α

UA = {uToken}
SA = {sToken, comm, commType, newVal1, newVal2, isAuthz , isPassed, isRlsdToken}

∪ ATTUCONfinite
preA

Where ATTUCONfinite
preA ={ a1, a2, . . . an }

OA = ∅
Range(uToken) = Range(sToken) = {0,1}
Range(comm) = UCUCONfinite

preA

Range(commType) = {Create, Delete, Modify}
Range(newV al1) = Range(newV al2) =σ(a1) × . . . × σ(an)
Range(isAuthz) = {0,1,2}
Range(isPassed) = {0,1,2}
Range(isRlsdToken) = {0,1,2}
Range(ai) = σ(ai), i = 1 to n
UAVT = Range (uToken)
SAVT = Range (sToken) × Range (comm) × Range (commType) × Range (isAuthz) ×
Range (isPassed) × isRlsdToken × σ(a1) × . . . σ(an)
OAVT = ∅
PABACAM

α = UCUCONfinite
preA

command type (create, modify, delete) respectively, newV al1 and newV al2 specify the proposed

new value tuple for source and target subject, isAuthz keeps track of whether a particular com-

mand is authorized, isPassed keeps track of whether the pre update and/ create/ delete and access

has completed, isRlsdToken specifies whether target has released its token to source. The initial

state of the system is configured as follows: U ABACAM
α = {u}

S ABACAM
α = O UCONfinite

preA

O ABACAM
α = ∅

uToken(u)= 0

For each subject s ∈ S ABACAM
α ,

where oUCONfinite
preA 7→ sABACAM

α

• SubCreator(s) = u

• sToken(s) = 0

• comm= null

• commType= null

65

• newVal1= null

• newVal2=null

• isAuthz=2

• isPassed= 2

• isRlsdToken = 2

• a1= o.a1

• ...

• an=o.an

Table 4.12 specifies the ABACAM
α policies to configure for the reduction, the details about

the policies are provided in the Table 4.14, Table 4.15,Table 4.16 and Table 4.17. Figure 4.2,

Figure 4.3 and Figure 4.4 shows the state transition actions of ABACAM
α configuration UCONfinite

preA

non-creating, creating and deleting commands respectively. Analyzing these figures we understand

that a single type ABACAM
α operations need to handle different state transitions which are shown

in Figure 4.2(b), Figure 4.3(b) and Figure 4.4 (b).

• SubjectModifybyUser handles tryaccess, endAccess and denied

• SubjectModifybySubject handles checkModify, checkCreate, checkDelete, doPreUpdate and

returnTargetToken

• SubjectCreatebySubject handles doCreate

• SubjectDeletebySubject handles doDelete

Table 4.13 shows an example how a sequence of ABACAM
α operations configure a UCONfinite

preA

non-creating command ucr(s,o).

66

(a) State transition actions with a Non Creating Com-
mand for a single UCONfinite

preA access.
(b) Mapped ABACAM

α State transition actions with a
Non Creating Command for a single UCONfinite

preA ac-
cess.

Figure 4.2: Mapping of UCONfinite
preA Non-Creating Command

(a) State transition actions with a Creating Command
for a single UCONfinite

preA access.
(b) Mapped ABACAM

α State transition actions with a
Creating Command for a single UCONfinite

preA access.

Figure 4.3: Mapping of UCONfinite
preA Creating Command

For this configuration ABACAM
α uses only four operations : 1)SubjectModifybyUser, 2)Sub-

jectModifybySubject, 3)SubjectCreatebySubject and 4)SubjectDeletebySubject). Other ABACAM
α

operations such as SubjectCreatebyUser, SubjectDeletebyUser, ObjectCreatebySubject and Ob-

jectModifybySubject are not permitted for this construction. So the policy for these operations are

configured as false. To handle different state transitions using a single ABACAM
α operation, its pol-

67

(a) State transition actions with a Deleting Command
for a single UCONfinite

preA access.
(b) Mapped ABACAM

α State transition actions with a
Deleting Command for a single UCONfinite

preA access.

Figure 4.4: Mapping of UCONfinite
preA Deleting Command

icy should have several disjunctive policies where we have to make sure only one disjunctive policy

would be true for a specific state transition function. Table 4.12 shows the disjunctive policy con-

figuration. The detail constructions of these policies are provided in Table 4.14, 4.15, 4.16, 4.17.

Table 4.14 shows the configuration of constraints for 1)giving user token to source subject, 2)return

target token to source after authorized access and 3) return user token after authorized access and

4) return user token after denial of access. Table 4.15 shows the configuration of constrains for

1) checking whether the modification is authorized, 2) checking whether the modification is not

authorized, 3)constraint for modification and access. Similarly Table 4.16 and Table 4.17 show the

configuration for constraints of creation and deletion respectively. Here NCPC, CPC and DelPC

are actually the boolean expression constructed from the disjuction of the CNF of truth tables for

non-creating, creating and deleting commands respectively.

Here is a brief description of the constraint provided in Table 4.14.

• ConstrTryAccess(u, s, uavt, savt) checks whether user token and subject token is 0, that

means no access is currently executing and it also checks whether uavt and savt contains

proposed attribute value for tokens are 1 and other information regarding the commands.

• ConstrRtrnTrgtToken(s1,s2,savt1,savt2) checks whether the authorized access is already

68

Table 4.12: ABACAM
α Policy Configuration

ABACAM
α Authorization Policy

Authorizationp(s,o) ≡ False
AuthorizationonSubjectp(s1,s2) ≡ True
ABACAM

α Creation, Deletion and Modification Policy

• ConstrSubCreatebyUser(u, s, savt) ≡ False

• ConstrSubDelbyUser(u, s)≡ False

• ConstrObjCreatebySub(s, o, oavt)≡ False

• ConstrObjModbySub(s, o, oavt)≡ False

• ConstrSubCreatebysub(s1, s2, savt1, savt2) ≡
ConstrPermitCreate(s1, s2, savt1, savt2)

• ConstrSubDelbySub(s1, s2, savt) ≡
ConstrPermitDelete(s1, s2, savt)

• ConstrSubModbyUser(u, s, uavt, savt) ≡
ConstrTryAccess(u,s,uavt,savt)
∨ ConstrEndAccess(u,s,uavt,savt)
∨ ConstrDenied(u,s,uavt,savt)

• ConstrSubModBySub(s1, s2, savt1, savt2)≡
ConstrCheckModifyPos(s1, s2, savt1, savt2)
∨ ConstrCheckModifyNeg(s1, s2, savt1, savt2)
∨ ConstrCheckCreatePos(s1, s2, savt1, savt2)
∨ ConstrCheckCreateNeg(s1, s2, savt1, savt2)
∨ ConstrCheckDeletePos(s1, s2, savt1, savt2)
∨ ConstrCheckDeleteNeg(s1, s2, savt1, savt2)
∨ ConstrPermitPreUpdate(s1, s2, savt1, savt2)
∨ ConstrRtrnTrgtToken(s1, s2, savt1, savt2)

passed ((s1’s and s2’s isAuthorized= 1 and isPassed =1) and also checks whether savt1

contains isRlsdToken = 1 and savt2 contains sToken = 0, isAuthorized = 2 , isPassed = 2,

isRlsdToken = 2 and nullify the other information regarding the command.

• ConstrEndAccess(u, s, uavt, savt) checks whether the authorized access is already passed

and target token is returned ((s1’s and s2’s isAuthorized= 1, isPassed =1 and isRlsdToken =

1) also checks uavt and savt has proposed token 0 and nullify the other information regarding

the command.

• ConstrDenied(u, s, uavt, savt) checks whether access is not authorized and user and sub-

69

Table 4.13: A Sequence of Actions in ABACAM
α to Configure the UCONfinite

preA Non-Creating Com-
mand ucr(s, o)

State Transition Actions ABACAM
α Operations

tryaccess(Give Source To-
ken)

ModifySubjectAttbyUser(u,s, 〈uToken = 1〉, 〈sToken = 1, comm =
ucr, commType = Modify, newV al1 = 〈fucr1,a1

(s), . . . fucr1,an
(s)〉, newV al2 =

〈fucr2,a1
(s), . . . fucr2,an

(s)〉, isAuthz = 2, isPassed = 2, isRlsdToken = 2〉)
checkModify(Check Pre-
Condition if Authorized)

ModifySubjectAttBySubject(s1, s2, 〈sToken = 1, comm =
comma(s1), commType = Modify, newV al1 = newV al1(s1), newV al2 =
newV al2(s1), isAuthz = 1, isPassed = 0, isRlsdToken = 0, a1 =
a1(s1), . . . , an = an(s1)〉, 〈1, comm(s1), commType = Modify, newV al1 =
newV al1(s1), newV al2 = newV al2(s1), isAuthz = 1, isPassed =
0, isRlsdToken = 0, a1 = a1(s2), . . . , an = an(s2)〉)

checkModify(Check Pre-
Condition if not Authorized)

ModifySubjectAttBySubject(s1, s2, 〈sToken = 1, comm =
command(s1), commType = Modify, newV al1 = newV al1(s1), newV al2 =
newV al2(s1), isAuthz = 0, isPassed = 2, isRlsdToken = 2, a1 =
a1(s1), . . . , an = an(s1)〉, 〈1, comm(s1), commType = Modify, newV al1 =
newV al1(s1), newV al2 = newV al2(s1), isAuthz = 2, isPassed =
2, isRlsdToken = 2, a1 = a1(s2), . . . , an = an(s2)〉)

doPreUpdate (PreUpdate
and Access if Authorized)

ModifySubjectAttBySubject(s1, s2, 〈sToken = 1, comm = comm(s1), commType =
Modify, newV al1 = newV al1(s1), newV al2 = newV al2(s1), isAuthz =
1, isPassed = 1, isRlsdToken = 0, a1 = avt1.a1,avt1.an〉,
〈sToken = 1, comm = comm(s1), commType = Modify, newV al1 =
newV al1(s1), newV al2 = newV al2(s1), isAuthz = 1, isPassed =
1, isRlsdToken = 0, a1 = avt2.a1,avt2.an〉)

returnTargetToken(Release
Target Token)

ModifySubjectAttBySubject(s1, s2,〈sToken = 1, comm = comm(s1), commType =
commType(s1), newV al1 = newV al1(s1), newV al2 = newV al2(s1), isAuthz =
isAuthz(s1), isPassed = 1, isRlsdToken = 0, a1 = a1(s1), . . . , an = an(s1)〉,
〈sToken = 0, comm = null, commType = null, newV al1 = null, newV al2 =
null, isAuthz = 2, isPassed = 2, isRlsdToken = 2, a1 = a1(s2), . . . , an =
an(s2)〉)

denied/endAccess(Release
Source Token)

ModifySubjectAttbyUser(u,s, 〈uToken = 0〉, 〈sToken = 0, comm =
null, commType = null, newV al1 = null, newV al2 = null, isAuthz =
2, isPassed = 2, isRlsdToken = 2, a1 = a1(s), . . . , an = an(s)〉)

ject still has active token(sToken =1, isAuthorized= 0, isPassed =2 and isRlsdToken=2) and

nullify the user and subject token and all the command specific information the subject con-

tains.

Here is the brief description of the constraints provided in Table 4.15, 4.16 and 4.17

• ConstrCheckModifyPos(s1,s2,savt1,savt2) Checks whether the non-creating command comm

(s1) is authorized. Here NCPC is the boolean expression constructed from the truth table of

non-creating commands.

• ConstrCheckModifyNeg(s1,s2,savt1,savt2) Checks whether the non-creating command co-

mm(s1) is not authorized. Here NCPC is the boolean expression constructed from the truth

table of non-creating commands.

70

Table 4.14: Configuration of Constraint: Give and Back User Token and Subject Token
Constraint for Giving User Token to Source Subject
ConstrTryAccess(u,s,uavt,savt) ≡

uToken(u) =0 ∧ sToken(s)=0 ∧ comm(s)= null ∧ commType(s)= null ∧ isAuthz (s) 2 ∧ isPassed(s)= 2
∧ isRlsdToken (s)= 2

uToken′(u) =1 ∧ sToken′(s)=1 ∧ comm′(s)∈ UCUCONfinite
preA ∧ commType′(s)∈ Range (commType) ∧

isAuthz ′(s)= 2
∧ isPassed′(s)= 2 ∧ isRlsdToken′(s)= 2 ∧ a′1(s)= a1(s) ∧ . . . ∧ a′n(s)=an(s)

Return target token to source after authorized access
ConstrRtrnTrgtToken(s1, s2, savt1, savt2) ≡

sToken(s1) =1 ∧ comm(s1)= comm(s1) ∧ commType(s1)= commType(s1) ∧ isAuthz(s1) = 1
∧ isPassed(s1)= 1 ∧ isRlsdToken(s1) = 0
∧ sToken(s2)=1 ∧ comm(s2) = comm(s1) ∧ commType(s2)= commType(s1) ∧ isAuthz(s2) = 1
∧ isPassed(s2)= 1 ∧ isRlsdToken(s2) = 0
∧ sToken′(s1)=1 ∧ comm′(s1)=comm(s1)∧ commType′(s1)= commType(s1) ∧ isAuthz ′(s1) = 1 ∧

isPassed′(s1)= 1
∧ isRlsdToken′(s1) = 1 ∧ a1

′(s1) = a1(s1)∧ . . . ∧ an′(s1) = an(s1)
∧ sToken′(s2)=0 ∧ comm′(s2)=null ∧ commType′(s2)= null ∧ isAuthz ′(s2) = 2 ∧ isPassed′(s2)= 2
∧ isRlsdToken′(s2) = 2 ∧ a1

′(s2) = a1(s2) ∧ . . . ∧ an′(s2) = an(s2)
Return user token after authorized access
ConstrEndAccess(u, s, uavt, savt) ≡

uToken(u) = 1 ∧ sToken(s)=1 ∧ comm(s)= comm(s) ∧ commType(s)= commType(s)
∧ isAuthz(s) = 1 ∧ isPassed(s)= 1 ∧ isRlsdToken(s) = 1
∧ uToken(u) = 0∧ sToken′(s) =0 ∧ comm′(s)= null ∧ commType′(s)= null ∧ isAuthz ′(s) = 2
∧ isPassed′(s)= 2 ∧ isRlsdToken′(s) = 2 ∧ a1

′(s)=a1(s) ∧ . . . ∧ an′(s)= an(s))
Return User Token After Denial
ConstrDeniedAccess(u, s, uavt, savt)

uToken(u) = 1∧ sToken(s)=1 ∧ comm(s)= comm(s) ∧ commType(s)= commType(s)∧ isAuthz(s) = 0 ∧
isPassed(s)= 2 ∧ isRlsdToken(s) = 2
∧ uToken(u) = 0∧ sToken′(s) =0 ∧ comm′(s)= null ∧ commType′(s)= null ∧ isAuthz ′(s) = 2
∧ isPassed′(s)= 2 ∧ isRlsdToken′(s) = 2 ∧ a1

′(s)=a1(s) ∧ . . . ∧ an′(s)= an(s))

• ConstrCheckCreatePos(s1,s2,savt1,savt2) Checks whether the creating command comm

(s1) is authorized. Here CPC is the boolean expression constructed from the truth table of

creating commands.

• ConstrCheckCreateNeg(s1,s2,savt1,savt2) Checks whether the creating command comm

(s1) is not authorized. Here CPC is the boolean expression constructed from the truth table

of creating commands.

• ConstrDeleteCreatePos(s1,s2,savt1,savt2) Checks whether the deleting command comm(s1)

is authorized. Here DelPC is the boolean expression constructed from the truth table of delet-

ing

71

Table 4.15: Configuration of Constraints: for Modify(Checking authorization, modify)
Check Whether Modification is Authorized
ConstrCheckModifyPos(s1, s2, savt1, savt2) ≡

sToken(s1)=1 ∧ comm(s1)=comm(s1)∧ commType(s1)= Modify∧ isAuthz(s1) = 2∧ isPassed= 2∧
isRlsdToken(s1) = 2)
∧ sToken(s2)=0 ∧ comm(s2) = null ∧ commType(s2)= null ∧ isAuthz(s2) = 2 ∧ isPassed(s2)= 2 ∧

isRlsdToken(s2)= 2)
∧ NCPC
∧ sToken′(s1)=1 comm′(s1)=comm(s1), commType′(s1)= Modify, isAuthz ′(s1) = 1 ∧ isPassed′(s1)= 0
Check Whether modification is not authorized
ConstrCheckModifyNeg(s1, s2, savt1, savt2)≡

sToken(s1)=1 ∧ comm(s1)=comm(s1) ∧ commType(s1)= Modify ∧ isAuthz(s1) = 2∧ isPassed(s1)= 2
∧ isRlsdToken(s1) = 2
∧ sToken(s2)=0 ∧ comm(s2) = null ∧ commType(s2)= null ∧ isAuthz(s2) = 2 ∧ isPassed(s2)= 2 ∧

isRlsdToken = 2
∧ !(NCPC∧ NCf1 ∧ NCf2)
∧ sToken′(s1)=1 ∧ comm′(s1)=comm(s1)∧ commType′(s1)= Modify ∧ isAuthz ′(s1) = 0 ∧

isPassed′(s1)= 2
∧ isRlsdToken′(s1) = 2∧ a1

′(s1)=a1(s1) ∧ . . . ∧ an′(s1)=an(s1)
∧ sToken′(s2)=0∧ comm′(s2)=null∧ commType′(s2)=null∧ isAuthz ′(s2)= 2∧ isPassed′(s2)= 2
∧ isRlsdToken′(s2) = 2∧ a1

′(s2)=a1(s2)∧ . . . ∧ an′(s2)=an(s2)
Do PreUpdate
ConstrPermitModify(s1, s2, savt1, savt2) ≡

sToken(s1)=1 ∧ comm(s1)=comm(s1)∧ commType(s1)= Modify∧ isAuthz(s1) = 1∧ isPassed(s1)= 0∧
isRlsdToken(s1) = 0
∧ sToken(s2)=1∧ comm(s2) = comm(s1)∧ commType(s2)= Modify ∧ isAuthz(s2) = 1∧ isPassed(s2)= 0
∧ isRlsdToken(s2) = 0
∧ sToken′(s1)=1 ∧ comm′(s1)=comm(s1) ∧ commType′(s1)= Modify ∧ isAuthz ′(s1) = 1 ∧

isPassed′(s1)= 1 ∧ isRlsdToken′(s1) = 0
∧ sToken′(s2)=0 ∧ comm′(s2)=comm(s1)∧ commType′(s2)= Modify ∧ isAuthz ′(s2) = 1 ∧ isPassed′(s2)=

1 ∧ isRlsdToken′(s2) = 0

• ConstrDeleteCreateNeg(s1,s2,savt1,savt2) Checks whether the deleting command comm(s1)

is not authorized. Here DelPC is the boolean expression constructed from the truth table of

deleting commands.

• ConstrPermitModify(s1,s2,savt1,savt2) Check the state attribute of an authorized non-

creating command and permit access and do the update (isAuthorized= 1, isPassed=1, is-

RlsdToken = 0)

• ConstrPermitCreate(s1,s2,savt1,savt2) Check the state attribute of an authorized creating

command and permit access and do the create (isAuthorized= 1, isPassed=1, isRlsdToken =

0)

72

Table 4.16: Configuration of Constraints: for Create(Checking authorization, Create)
Check Whether creation is authorized
ConstrCheckCreatePos(s1, s2, savt1, savt2) ≡

sToken(s1)=1 ∧ comm(s1)=comm(s1)∧ commType(s1)= Create∧ isAuthz(s1) = 2∧ isPassed= 2∧
isRlsdToken(s1) = 2)
∧ sToken(s2)=0 ∧ comm(s2) = null ∧ commType(s2)= null ∧ isAuthz(s2) = 2 ∧ isPassed(s2)= 2 ∧

isRlsdToken(s2)= 2)
∧ (CPC)
∧ sToken′(s1)=1 comm′(s1)=comm(s1), commType′(s1)= Modify, isAuthz ′(s1) = 1 ∧ isPassed′(s1)= 0
∧ isRlsdToken′(s1) = 0 ∧ a1

′(s1)=a1(s1) ∧ . . . a′n(s1)=an(s1)
∧ sToken′(s2)=1∧ comm′(s2)=comm(s1)∧ commType′(s2)= Create∧ isAuthz ′(s2) = 1∧ isPassed′(s2)=

0
∧isRlsdToken′(s2) = 0∧ a1

′(s2)=a1(s2)∧ . . . ∧ an′(s2)=an(s2)
Check Whether creation is not authorized
ConstrCheckCreateNeg(s1, s2, savt1, savt2)≡

sToken(s1)=1 ∧ comm(s1)=comm(s1) ∧ commType(s1)= Create ∧ isAuthz(s1) = 2∧ isPassed(s1)= 2 ∧
isRlsdToken(s1) = 2
∧ sToken(s2)=0 ∧ comm(s2) = null ∧ commType(s2)= null ∧ isAuthz(s2) = 2 ∧ isPassed(s2)= 2 ∧

isRlsdToken = 2
∧ !(CPC)
∧ sToken′(s1)=1 ∧ comm′(s1)=comm(s1)∧ commType′(s1)= Create ∧ isAuthz ′(s1) = 0 ∧ isPassed′(s1)=

2
∧ isRlsdToken′(s1) = 2∧ a1

′(s1)=a1(s1) ∧ . . . ∧ an′(s1)=an(s1)
∧ sToken′(s2)=0∧ comm′(s2)=null∧ commType′(s2)=null∧ isAuthz ′(s2)= 2∧ isPassed′(s2)= 2
∧ isRlsdToken′(s2) = 2∧ a1

′(s2)=a1(s2)∧ . . . ∧ an′(s2)=an(s2)
Do Create
ConstrPermitCreate(s1, s2, savt1, savt2) ≡

sToken(s1)=1 ∧ comm(s1)=comm(s1)∧ commType(s1)= Create∧ isAuthz(s1) = 1∧ isPassed(s1)= 0∧
isRlsdToken(s1) = 0
∧ sToken′(s1)=1 ∧ comm′(s1)=comm(s1) ∧ commType′(s1)= Modify ∧ isAuthz ′(s1) = 1 ∧

isPassed′(s1)= 1 ∧ isRlsdToken′(s1) = 0
∧ sToken′(s2)=1 ∧ comm′(s2)=comm(s1)∧ commType′(s2)= Create ∧ isAuthz ′(s2) = 1 ∧ isPassed′(s2)=

1 ∧ isRlsdToken′(s2) = 0

• ConstrPermitDelete(s1,s2,savt1)Check the state attribute of an authorized deleting com-

mand and permit access and do delete (isAuthorized= 1, isPassed=1, isRlsdToken = 0)

4.2.3 Safety and Expressive Power

ABACAM
α Scheme

An ABACAM
α scheme consists of 〈ΓABACAM

α , ΨABACAM
α , QABACAM

α , `ABACAM
α 〉. Where

• ΓABACAM
α is the set of all states. Where each state γABACAM

α ∈ ΓABACAM
α is characterized by

〈 Uγ , Sγ , Oγ , UA, SA, OA, uavtf, savtf, oavtf, P, SubCreator〉 where Uγ , Sγ , Oγ are set of

users, subjects objects respectively in state γ.

73

Table 4.17: Configuration of Constraints: for Delete(Checking authorization, Delete)
Check whether Deletion is authorized
ConstrCheckDelPos(s1, s2, savt1, savt2) ≡

sToken(s1)=1 ∧ comm(s1)=comm(s1)∧ commType(s1)= Delete∧ isAuthz(s1) = 2∧ isPassed= 2∧
isRlsdToken(s1) = 2)
∧ sToken(s2)=0 ∧ comm(s2) = null ∧ commType(s2)= null ∧ isAuthz(s2) = 2 ∧ isPassed(s2)= 2 ∧

isRlsdToken(s2)= 2)
∧ (DelPC)
∧ sToken′(s1)=1 comm′(s1)=comm(s1), commType′(s1)= Delete, isAuthz ′(s1) = 1 ∧ isPassed′(s1)= 0
∧ isRlsdToken′(s1) = 0 ∧ a1

′(s1)=a1(s1) ∧ . . . a′n(s1)=an(s1)
∧ sToken′(s2)=1∧ comm′(s2)=comm(s1)∧ commType′(s2)= Delete∧ isAuthz ′(s2) = 1∧ isPassed′(s2)=

0
∧isRlsdToken′(s2) = 0∧ a1

′(s2)=a1(s2)∧ . . . ∧ an′(s2)=an(s2)
Check Whether Deletion is not authorized
ConstrCheckDelNeg(s1, s2, savt1, savt2)≡

sToken(s1)=1 ∧ comm(s1)=comm(s1) ∧ commType(s1)= Delete ∧ isAuthz(s1) = 2∧ isPassed(s1)= 2 ∧
isRlsdToken(s1) = 2
∧ sToken(s2)=0 ∧ comm(s2) = null ∧ commType(s2)= null ∧ isAuthz(s2) = 2 ∧ isPassed(s2)= 2 ∧

isRlsdToken = 2
∧ !(DelPC)
∧ sToken′(s1)=1 ∧ comm′(s1)=comm(s1)∧ commType′(s1)= Delete ∧ isAuthz ′(s1) = 0 ∧ isPassed′(s1)=

2
∧ isRlsdToken′(s1) = 2∧ a1

′(s1)=a1(s1) ∧ . . . ∧ an′(s1)=an(s1)
∧ sToken′(s2)=0∧ comm′(s2)=null∧ commType′(s2)=null∧ isAuthz ′(s2)= 2∧ isPassed′(s2)= 2
∧ isRlsdToken′(s2) = 2∧ a1

′(s2)=a1(s2)∧ . . . ∧ an′(s2)=an(s2)
Do Delete
ConstrPermitDelete(s1, s2, savt1) ≡

sToken(s1)=1 ∧ comm(s1)=comm(s1)∧ commType(s1)= Delete∧ isAuthz(s1) = 1∧ isPassed(s1)= 0∧
isRlsdToken(s1) = 0
∧ sToken(s2)=1∧ comm(s2) = comm(s1)∧ commType(s2)= Delete ∧ isAuthz(s2) = 1∧ isPassed(s2)= 0
∧ isRlsdToken(s2) = 0
∧ sToken′(s1)=1 ∧ comm′(s1)=comm(s1) ∧ commType′(s1)= Modify ∧ isAuthz ′(s1) = 1 ∧

isPassed′(s1)= 1 ∧ isRlsdToken′(s1) = 0

• ΨABACAM
α is the set of state transition rules which are all ABACAM

α operations defined in

Table 4.6.

• QABACAM
α is the set of queries of type:

1. Authorizationp(s, o)

for p∈ PABACAM
α , s ∈ SABACAM

α , o ∈OABACAM
α .

2. AuthorizationonSubjectp(s1, s2)

for p∈ PABACAM
α , s1 ∈ SABACAM

α , s2 ∈SABACAM
α .

3. ConstrSubCreatebyUser(u, s, savt)

74

for u ∈ UABACAM
α , s /∈ SABACAM

α , savt ∈ SAVTABACAM
α .

4. ConstrSubCreatebySub(s1, s2, savt1, savt2)

for s1 ∈ SABACAM
α , s2 /∈ SABACAM

α , savt1 ∈ SAVTABACAM
α , savt2 ∈ SAVTABACAM

α .

5. ConstrSubModbyUser(u,s,uavt, savt)

for u ∈ UABACAM
α , s ∈ SABACAM

α , uavt ∈ UAVTABACAM
α , savt ∈ SA- VTABACAM

α .

6. ConstrSubModbySub(s1,s2,savt1, savt2)

for s1 ∈ SABACAM
α , s2 ∈ SABACAM

α , savt1 ∈ SAVTABACAM
α , savt2 ∈ SAVTABACAM

α .

7. ConstrObjCreatebySub(s, o, oavt)

for s ∈ SABACAM
α , o /∈ OABACAM

α , oavt ∈ OAVTABACAM
α .

8. ConstrObjModbySub(s, o, oavt)

for s ∈ SABACAM
α , o ∈ OABACAM

α , oavt ∈ OAVTABACAM
α .

• Entailment ` specifies that given a state γ ∈ ΓABACAM
α and a query q ∈ QABACAM

α , γ ` q if

and only if q returns true in state γ.

UCONfinite
preA Scheme

An UCONfinite
preA scheme consists of 〈ΓUCONfinite

preA , ΨUCONfinite
preA , QUCONfinite

preA , `UCONfinite
preA 〉, as follows.

• ΓUCONfinite
preA is the set of all states. Where each state γUCONfinite

preA ∈ ΓUCONfinite
preA is characterized

by 〈OSγ∆, UR,ATT,AV T, avtf〉. Here OSγ∆ is the object schema in state γ.

• ΨUCONfinite
preA is set of state transition rules which are the set of creating, non-creating and

deleting commands of UCONfinite
preA defined in Table 4.8, 4.9 and 4.10 respectively.

• QUCONfinite
preA is the set of queries and of following types:

1. CheckPCNCR(Accessp, avtf(s), avtf(o), avtf(s), avtf(o)) for ucr ∈ UC, r ∈ UR, s and

o are UCONfinite
preA objects.

75

2. CheckPCNCR(AccessSubjectp, avtf(s), avtf(o), avtf(s), avtf(o)) for ucr ∈ UC, r ∈ UR,

s and o are UCONfinite
preA objects.

3. CheckPCNCR(ModifySubjectAttbyUser_ijkld, avtf(s), avtf(o),〈 user, s.user_name, NULL,

NULL, uavt1, . . . uavtn,NULL,. . . ,NULL, NULL,. . . , NULL 〉 , 〈 savt1, . . . savtn 〉)

where i = uavtf(u), j = savtf(s), k = uavt, l = savt.

4. CheckPCNCR(ModifySubjectAttbySub_ijkld, avtf(s), avtf(o),〈 subject, NULL, s.SubCreator,

savt11 , . . . savt1n ,NULL,. . . ,NULL, NULL,. . . , NULL 〉, 〈 savt1, . . . savtn 〉) where i

= uavtf(u), j = savtf(s), k = uavt, l = savt.

5. CheckPCNCR(ModifyObjectAttbySubject_ijkd, avtf(s), avtf(o), avtf(s), 〈 oavt1, . . .

oavtp 〉) where i = savtf(s), j = oavtf(o) and k = oavt.

6. CheckPCCR(CreateSubjectbyUser_ijd, avtf(s), o, avtf(s), 〈 subject, NULL, u, NULL,. . . ,

NULL, savt1, . . . savtn, NULL,. . . , NULL 〉) where i = uavtf(u) and j = savt.

7. CheckPCCR(CreateSubjectbySubject_ijkd, avtf(s), o, 〈 subject, NULL, u, savt11 , . . .

savt1n , NULL,. . . , NULL 〉, 〈 subject, NULL, u, NULL,. . . , NULL, savt21 , . . . savt2n ,

NULL,. . . , NULL 〉) where i = uavtf(u), j = savt1 and k = savt2 .

8. CheckPCCR(CreateObjectbySubject_ijd, avtf(s), o, avtf(s), 〈 object, NULL, NULL,

NULL, NULL,. . . , NULL, NULL,. . . , NULL, oavt1, . . . oavtp 〉) where i = savtf(s)

and j = oavt.

9. CheckPCDelCR(DeleteSubbyUser_ijd, avtf(s), avtf(o)) where i = uavtf(u), j = savtf(s).

10. CheckPCDelCR(DeleteSubbySub_ijkd, avtf(s), avtf(o),〈savt1, . . . , savtn〉) where i =

uavtf(u), j = savtf(s) and k = savt.

• Entailment ` specifies that given a state γ ∈ ΓUCONfinite
preA and a query q ∈ QUCONfinite

preA , γ ` q if

and only if q returns true in state γ.

Mapping from ABACAM
α to UCONfinite

preA (σABACAM
α)

• Mapping of ΓABACAM
α to ΓUCONfinite

preA

76

– Mapping of Object Schema(OS∆), ATT and UR is provided in Table 4.7

• Mapping of ΨABACAM
α to ΨUCONfinite

preA

– σ(Accessp) = Access
UCONfinite

preA
r where r = p.

– σ(AccessSubjectp) = AccessSubject
UCONfinite

preA
r where r = p.

– σ(CreateSubjectbyUser(u, s, savt)) = CreateSubjectbyUser_ijd(s,o), i = uavtf(u) and j

= savt.

– σ(CreateSubjectbySubject(s1, s2, savt1, savt2)) = CreateSubjectbySubject_ijkd(s,o), i

= savtf(s1), j = savt1 and k = savt2.

– σ(DeleteSubjectbyUser(u, s)) = DeleteSubbyUser_ijd(s, o), i = uavtf(u) and j = savtf(s).

– σ(DeleteSubjectbySubject(s1, s2, savt)) = DeleteSubbySub_ijkd(s,o), i = savtf(s1), j =

savtf(s2), k = savt.

– σ(ModifySubjectAttbyUser(u, s, uavt, savt)) = ModifySubjectAttbyUser_ijkld(s,o), i

= uavtf(u) and j = savtf(s), k = uavt, l =savt.

– σ(ModifySubjectAttbySubject(s1, s2, savt1, savt2)) = ModifySubjectAttbySubject_ij-

kld(s,o), i = savtf(S1) and j = savtf(s2), k = savt1, l =savt2.

– σ(CreateObjectbySubject(s, o, oavt)) = CreateObject_ijd(s,o), i = savtf(s) and j = oavt.

– σ(ModifyObjectAttbySubject(s, o, oavt)) = ModifyObjectAtt_ijkd(s,o), i = savtf(s) and

j = oavtf(o) and k = oavt.

• Mapping of QABACAM
α to QUCONfinite

preA is provided below

– σ(Authorizationp(s, o)) = CheckPCNCR(Accessp, avtf(s), avtf(o), avtf(s), avtf(o)).

– σ(AuthorizationonSubjectp(s, o)) = CheckPCNCR(AccessSubjectp, avtf(s), avtf(o), avtf(s),

avtf(o)).

– σ(ConstrSubCreatebyUser(u, s, savt)) = CheckPCCR(CreateSubjectbyUser_ijd, avtf(s),

o, avtf(s), 〈 subject, NULL, u, NULL,. . . , NULL, savt1, . . . savtn, NULL,. . . , NULL

〉) where i = uavtf(u) and j = savt.

77

– σ(ConstrSubCreatebySub(s1, s2, savt1,)) = CheckPCCR(CreateSubjectbySubject_ijkd,

avtf(s), o, 〈 subject, NULL, u, savt11 , . . . savt1n , NULL,. . . , NULL 〉, 〈 subject, NULL,

u, NULL,. . . , NULL, savt21 , . . . savt2n , NULL,. . . , NULL 〉) where i = uavtf(u), j =

savt1 and k = savt2 .

– σ(ConstrSubDelbyUser(u, s))= CheckPCDelCR(DeleteSubbyUser_ijd, avtf(s), avtf(o))

where i = uavtf(u), j = savtf(s).

– σ(ConstrSubDelbySub(s1, s2, savt))= CheckPCDelCR(DeleteSubbySub_ijkd, avtf(s),

avtf(o),〈savt1, . . . , savtn〉) where i = uavtf(u), j = savtf(s) and k = savt.

– σ(ConstrSubModbyUser(u, s, uavt, savt))= CheckPCNCR(ModifySubjectAttbyUser-

_ijkld, avtf(s), avtf(o),〈 user, s.user_name, NULL, NULL, uavt1, . . . uavtn,NULL, . . . ,

NULL, NULL, . . . , NULL 〉 , 〈 savt1, . . . savtn 〉) where i = uavtf(u), j = savtf(s), k =

uavt, l = savt.

– σ(ConstrSubModbySub(s1, s2, savt1, savt2))= CheckPCNCR(ModifySubjectAttbySub-

_ijkld, avtf(s), avtf(o),〈 subject, NULL, s.SubCreator, savt11 , . . . savt1n ,NULL,. . . ,NULL,

NULL,. . . , NULL 〉, 〈 savt1, . . . savtn 〉) where i = uavtf(u), j = savtf(s), k = uavt, l =

savt.

– σ(ConstrObjCreatebySub(s, o, oavt)) = CheckPCCR(CreateObjectbySubject_ijd, avtf(s),

o, avtf(s), 〈 object, NULL, NULL, NULL, NULL,. . . , NULL, NULL,. . . , NULL,

oavt1, . . . oavtp 〉) where i = savtf(s) and j = oavt.

– σ(ConstrObjModbySub(s, o, oavt))= CheckPCNCR(ModifyObjectAttbySubject_ijkd,

avtf(s), avtf(o), avtf(s), 〈 oavt1, . . . oavtp 〉) where i = savtf(s), j = oavtf(o) and k =

oavt.

Mapping from UCONfinite
preA to ABACAM

α (σUCONfinite
preA)

• Mapping of ΓABACAM
α to ΓUCONfinite

preA

– Mapping of UA, SA, OA, UAVT, SAVT, OAVT and P defined in Table 4.11.

78

Table 4.18: A Sequence of Actions of ABACAM
α to Configure the UCONfinite

preA Creating Command
ucr(s, o).

State Transition Actions ABACAM
α Operations

tryaccess(Give Source To-
ken)

ModifySubjectAttbyUser(u,s, 〈uToken = 1〉, 〈sToken = 1, comm =
ucr, commType = Create, newV al1 = 〈fucr1,a1

(s), . . . fucr1,an
(s)〉, newV al2 =

〈fucr2,a1
(s), . . . fucr2,an

(s)〉, isAuthz = 2, isPassed = 2, isRlsdToken = 2〉).
checkCreate(Check PreCon-
dition if Authorized)

ModifySubjectAttBySubject(s1, s2, 〈sToken = 1, comm =
comma(s1), commType = Create, newV al1 = newV al1(s1), newV al2 =
newV al2(s1), isAuthz = 1, isPassed = 0, isRlsdToken = 0, a1 =
a1(s1), . . . , an = an(s1)〉, 〈1, comm(s1), commType = Create, newV al1 =
newV al1(s1), newV al2 = newV al2(s1), isAuthz = 1, isPassed =
0, isRlsdToken = 0, a1 = a1(s2), . . . , an = an(s2)〉)

checkCreate(Check PreCon-
dition if not Authorized)

ModifySubjectAttBySubject(s1, s2, 〈sToken = 1, comm =
command(s1), commType = Create, newV al1 = newV al1(s1), newV al2 =
newV al2(s1), isAuthz = 0, isPassed = 2, isRlsdToken = 2, a1 =
a1(s1), . . . , an = an(s1)〉, 〈1, comm(s1), commType = Create, newV al1 =
newV al1(s1), newV al2 = newV al2(s1), isAuthz = 2, isPassed =
2, isRlsdToken = 2, a1 = a1(s2), . . . , an = an(s2)〉)

doCreate (Create and Access
if Authorized)

CreateSubjectBySubject(s1, s2, 〈sToken = 1, comm = comm(s1), commType =
Create, newV al1 = newV al1(s1), newV al2 = newV al2(s1), isAuthz =
1, isPassed = 1, isRlsdToken = 0, a1 = avt1.a1,avt1.an〉,
〈sToken = 1, comm = comm(s1), commType = Create, newV al1 =
newV al1(s1), newV al2 = newV al2(s1), isAuthz = 1, isPassed =
1, isRlsdToken = 0, a1 = avt2.a1,avt2.an〉)

returnTargetToken(Release
Target Token)

ModifySubjectAttBySubject(s1, s2,〈sToken = 1, comm = comm(s1), commType =
commType(s1), newV al1 = newV al1(s1), newV al2 = newV al2(s1), isAuthz =
isAuthz(s1), isPassed = 1, isRlsdToken = 0, a1 = a1(s1), . . . , an = an(s1)〉,
〈sToken = 0, comm = null, commType = null, newV al1 = null, newV al2 =
null, isAuthz = 2, isPassed = 2, isRlsdToken = 2, a1 = a1(s2), . . . , an =
an(s2)〉)

denied/endAccess(Release
Source Token)

ModifySubjectAttbyUser(u,s, 〈uToken = 0〉, 〈sToken = 0, comm =
null, commType = null, newV al1 = null, newV al2 = null, isAuthz =
2, isPassed = 2, isRlsdToken = 2, a1 = a1(s), . . . , an = an(s)〉)

– Mapping of U, S, O and the initial state γ0 is defined in Section 4.2.2

• Mapping of ΨUCONfinite
preA to ΨABACAM

α

– UCONfinite
preA non-creating command ucr(s,o) is same as shown in Table 4.13.

– Sequence of ABACAM
α operations that map UCONfinite

preA creating command ucr(s,o)

provided in Table 4.19.

– Sequence of ABACAM
α operations that map UCONfinite

preA deleting command ucr(s,o)

provided in Table 4.18.

• Mapping of QUCONfinite
preA to QABACAM

α is provided below

79

Table 4.19: A Sequence of Actions in ABACAM
α to Configure the UCONfinite

preA Deleting Command
ucr(s, o).

tryaccess(Give Source To-
ken)

ModifySubjectAttbyUser(u,s, 〈uToken = 1〉, 〈sToken = 1, comm =
ucr, commType = Delete, newV al1 = 〈fucr1,a1

(s, o), . . . fucr1,an
(s, o)〉, newV al2 =

null, isAuthz = 2, isPassed = 2, isRlsdToken = 2〉)
checkDelete(Check PreCon-
dition if Authorized)

ModifySubjectAttBySubject(s1, s2, 〈sToken = 1, comm =
comma(s1), commType = Delete, newV al1 = newV al1(s1), newV al2 =
newV al2(s1), isAuthz = 1, isPassed = 0, isRlsdToken = 0, a1 =
a1(s1), . . . , an = an(s1)〉, 〈1, comm(s1), commType = Delete, newV al1 =
newV al1(s1), newV al2 = newV al2(s1), isAuthz = 1, isPassed =
0, isRlsdToken = 0, a1 = a1(s2), . . . , an = an(s2)〉)

checkDelete(Check PreCon-
dition if not Authorized)

ModifySubjectAttBySubject(s1, s2, 〈sToken = 1, comm =
command(s1), commType = Delete, newV al1 = newV al1(s1), newV al2 =
newV al2(s1), isAuthz = 0, isPassed = 2, isRlsdToken = 2, a1 =
a1(s1), . . . , an = an(s1)〉, 〈1, comm(s1), commType = Delete, newV al1 =
newV al1(s1), newV al2 = newV al2(s1), isAuthz = 2, isPassed =
2, isRlsdToken = 2, a1 = a1(s2), . . . , an = an(s2)〉)

doDelete (Delete and Access
if Authorized)

DeleteSubjectBySubject(s1, s2, 〈sToken = 1, comm = comm(s1), commType =
Delete, newV al1 = newV al1(s1), newV al2 = newV al2(s1), isAuthz =
1, isPassed = 1, isRlsdToken = 0, a1 = avt1.a1,avt1.an〉)

returnTargetToken(Release
Target Token)

ModifySubjectAttBySubject(s1, s2,〈sToken = 1, comm = comm(s1), commType =
commType(s1), newV al1 = newV al1(s1), newV al2 = newV al2(s1), isAuthz =
isAuthz(s1), isPassed = 1, isRlsdToken = 0, a1 = a1(s1), . . . , an = an(s1)〉,
〈sToken = 0, comm = null, commType = null, newV al1 = null, newV al2 =
null, isAuthz = 2, isPassed = 2, isRlsdToken = 2, a1 = a1(s2), . . . , an =
an(s2)〉)

denied/endAccess(Release
Source Token)

ModifySubjectAttbyUser(u,s, 〈uToken = 0〉, 〈sToken = 0, comm =
null, commType = null, newV al1 = null, newV al2 = null, isAuthz =
2, isPassed = 2, isRlsdToken = 2, a1 = a1(s), . . . , an = an(s)〉)

– σ(CheckPCNCR(Accessp, avtf(s), avtf(o), avtf(s), avtf(o))) = Authorizationp(s, o) where

〈a1(s), . . . an(s)〉 = avtf(s) and 〈a1(s), . . . an(s)〉 = avtf(o) .

– σ (CheckPCNCR(AccessSubjectp, avtf(s), avtf(o), avtf(s), avtf(o))) = Authorization-

onSubjectp(s1, s2) where 〈a1(s1), . . . an(s1)〉 = avtf(s) and 〈a1(s2), . . . an(s2)〉 = avtf(o

– σ(CheckPCCR(CreateSubjectbyUser_ijd, avtf(s), o, avtf(s), 〈 subject, NULL, u, NULL,. . . ,

NULL, savt1, . . . savtn, NULL,. . . , NULL 〉))= ConstrSubCreatebyUser(u, s, savt))

where i = uavtf(u)= i and savt= j.

– σ(CheckPCCR(CreateSubjectbySubject_ijkd, avtf(s), o, 〈 subject, NULL, u, savt11 ,

. . . savt1n , NULL,. . . , NULL 〉, 〈 subject, NULL, u, NULL,. . . , NULL, savt21 , . . .

savt2n , NULL,. . . , NULL 〉))= ConstrSubCreatebySub(s1, s2, savt1,)), where uavtf(u)

= i, savt1 = j and savt2 = k.

80

– σ(CheckPCDelCR(DeleteSubbyUser_ijd, avtf(s), avtf(o))) = ConstrSubDelbyUser(u, s)),

where uavtf(u) = i, savtf(s) = j.

– σ(CheckPCDelCR(DeleteSubbySub_ijkd, avtf(s), avtf(o),〈savt1, . . . , savtn〉)) = Constr-

SubDelbySub(s1, s2, savt)), where i = uavtf(u), j = savtf(s) and k = savt.

– σ(CheckPCNCR(ModifySubjectAttbyUser_ijkld, avtf(s), avtf(o),〈 user, s.user_name,

NULL, NULL, uavt1, . . . uavtn,NULL,. . . ,NULL, NULL,. . . , NULL 〉 , 〈 savt1, . . .

savtn 〉)) = ConstrSubModbyUser(u, s, uavt, savt)), where uavtf(u) = i, savtf(s) = j,

uavt = k, savt = l.

– σ(CheckPCNCR(ModifySubjectAttbySubject_ijkld, avtf(s), avtf(o),〈 subject, NULL,

s.SubCreator, savt11 , . . . savt1n ,NULL,. . . ,NULL, NULL,. . . , NULL 〉, 〈 savt1, . . .

savtn 〉)) = ConstrSubModbySub(s1, s2, savt1, savt2)), where uavtf(u) = i, savtf(s) = j,

uavt = k, savt = l.

– σ(CheckPCCR(CreateObjectbySubject_ijd, avtf(s), o, avtf(s), 〈 object, NULL, NULL,

NULL, NULL,. . . , NULL, NULL,. . . , NULL, oavt1, . . . oavtp 〉)) = ConstrObjCreateby-

Sub(s, o, oavt)), where savtf(s) = i and oavt = j.

– σ(CheckPCNCR(ModifyObjectAttbySubject_ijkd, avtf(s), avtf(o), avtf(s), 〈 oavt1, . . .

oavtp 〉)) = ConstrObjModbySub(s, o, oavt)), where savtf(s) = i, oavtf(o) = j and oavt

= k .

Expressive Power Equivalence and Safety Decidability

The proof that the mappings provided in Section 4.2.3 and Section 4.2.3 are state matching reduc-

tions is lengthy and tedious. Here we present an outline of the main argument.

Lemma 3. σABACAM
α satisfies assertion 1 of the state matching reduction of Definition 1.

Proof. (Sketch): Assertion 1 requires that, for every γABACAM
α ∈ ΓABACAM

α and every ψABACAM
α ∈

ΨABACAM
α , 〈 γABACAM

α , ψABACAM
α 〉 = σ (〈 γABACAM

α , ψABACAM
α 〉) has the following property:

For every γABACAM
α

1 in scheme ABACAM
α such that

81

γABACAM
α

∗−→
ψABACAM

α
γ

ABACAM
α

1 ,

there exists a state γ
UCONfinite

preA

1 such that

1. γUCONfinite
preA (=σ(γABACAM

α)) ∗−→
ψ

UCONfinite
preA (=σ(ψABACAM

α))
γ

UCONfinite
preA

1 .

2. for every query qABACAM
α ∈QABACAM

α , γABACAM
α

1 `ABACAM
α qABACAM

α if and only if γ
UCONfinite

preA

1

`UCONfinite
preA σ(qABACAM

α). It can be decomposed into two directions:

(a) The “if" direction:

γ
UCONfinite

preA

1 `UCONfinite
preA σ(qABACAM

α) => γ
ABACAM

α
1 `ABACAM

α qABACAM
α .

(b) The “only if" direction:

γ
ABACAM

α
1 `ABACAM

α qABACAM
α => γ

UCONfinite
preA

1 `UCONfinite
preA σ(qABACAM

α).

The proof is by induction on number of steps n in

γABACAM
α

∗−→
ψABACAM

α
γ

ABACAM
α

1 .

Lemma 4. σABACAM
α satisfies assertion 2 of the state matching reduction of Definition 1.

Proof. (Sketch): Assertion 2 requires that, for every γABACAM
α ∈ ΓABACAM

α and every ψABACAM
α ∈

ΨABACAM
α , 〈 γABACAM

α ,ψABACAM
α 〉 = σ (〈 γABACAM

α ,ψABACAM
α 〉) has the following property:

For every γ
UCONfinite

preA

1 in scheme UCONfinite
preA such that

γUCONfinite
preA (=σ(γABACAM

α)) ∗−→
ψ

UCONfinite
preA (=σ(ψABACAM

α))
γ

UCONfinite
preA

1 ,

there exists a state γABACAM
α

1 such that

1. γABACAM
α

∗−→
ψABACAM

α
γ

ABACAM
α

1 .

2. for every query qABACAM
α ∈ QABACAM

α , γABACAM
α

1 `ABACAM
α qABACAM

α

if and only if γ
UCONfinite

preA

1 `UCONfinite
preA σ(qABACAM

α).

It can be decomposed into two directions:

82

(a) The “if" direction:

γ
UCONfinite

preA

1 `ABACAM
α σ(qABACAM

α) => γ
ABACAM

α
1 `ABACAM

α qABACAM
α .

(b) The “only if" direction:

γ
ABACAM

α
1 `ABACAM

α qABACAM
α => γ

UCONfinite
preA

1 `UCONfinite
preA σ(qABACAM

α).

The proof is by induction on number of steps n in

γUCONfinite
preA (=σ(γABACAM

α)) ∗−→
ψ

UCONfinite
preA (=σ(ψABACAM

α))
γ

UCONfinite
preA

1 .

Theorem 11. σABACAM
α is a state matching reduction.

Proof. Lemma 3 shows that σABACAM
α satisfies assertion 1 of Definition 1 and lemma 4 shows that

σABACAM
α satisfies assertion 2 of Definition 1. Thereby σABACAM

α is a state matching reduction.

Lemma 5. σUCONfinite
preA satisfies assertion 1 of the state matching reduction of Definition 1.

Proof. (Sketch): Assertion 1 requires that, for every γUCONfinite
preA ∈ ΓUCONfinite

preA and every ψUCONfinite
preA

∈ΨUCONfinite
preA , 〈 γUCONfinite

preA , ψUCONfinite
preA 〉 = σ (〈 γUCONfinite

preA , ψUCONfinite
preA 〉) has the following property:

For every γ
UCONfinite

preA

1 in scheme UCONfinite
preA such that

γUCONfinite
preA

∗−→
ψ

UCONfinite
preA

γ
UCONfinite

preA

1 ,

there exists a state γABACAM
α

1 such that

1. γABACAM
α (=σ(γUCONfinite

preA)) ∗−→
ψABACAM

α (=σ(ψ
UCONfinite

preA))
γ

ABACAM
α

1 .

2. for every query qUCONfinite
preA ∈ QUCONfinite

preA , γ
UCONfinite

preA

1 `UCONfinite
preA qUCONfinite

preA if and only if

γ
ABACAM

α
1 `ABACAM

α σ(qUCONfinite
preA). It can be decomposed into two directions:

(a) The “if" direction:

γ
ABACAM

α
1 `ABACAM

α σ(qUCONfinite
preA) => γ

UCONfinite
preA

1 `UCONfinite
preA qUCONfinite

preA .

(b) The “only if" direction:

γ
UCONfinite

preA

1 `UCONfinite
preA qUCONfinite

preA => γ
ABACAM

α
1 `ABACAM

α σ(qUCONfinite
preA).

83

The proof is by induction on number of steps n in

γUCONfinite
preA

∗−→
ψ

UCONfinite
preA

γ
UCONfinite

preA

1 .

Lemma 6. σUCONfinite
preA satisfies assertion 2 of the state matching reduction of Definition 1.

Proof. (Sketch): Assertion 2 requires that, for every γUCONfinite
preA ∈ ΓUCONfinite

preA and every ψUCONfinite
preA

∈ ΨUCONfinite
preA , 〈 γUCONfinite

preA ,ψUCONfinite
preA 〉 = σ (〈 γUCONfinite

preA ,ψUCONfinite
preA 〉) has the following property:

For every γABACAM
α

1 in scheme ABACAM
α such that

γABACAM
α (=σ(γUCONfinite

preA)) ∗−→
ψABACAM

α (=σ(ψ
UCONfinite

preA))
γ

ABACAM
α

1 ,

there exists a state γ
UCONfinite

preA

1 such that

1. γUCONfinite
preA

∗−→
ψ

UCONfinite
preA

γ
UCONfinite

preA

1 .

2. for every query qUCONfinite
preA ∈ QUCONfinite

preA , γ
UCONfinite

preA

1 `UCONfinite
preA qUCONfinite

preA

if and only if γABACAM
α

1 `ABACAM
α σ(qUCONfinite

preA).

It can be decomposed into two directions:

(a) The “if" direction:

γ
ABACAM

α
1 `UCONfinite

preA σ(qUCONfinite
preA) => γ

UCONfinite
preA

1 `UCONfinite
preA qUCONfinite

preA .

(b) The “only if" direction:

γ
UCONfinite

preA

1 `UCONfinite
preA qUCONfinite

preA => γ
ABACAM

α
1 `ABACAM

α σ(qUCONfinite
preA).

The proof is by induction on number of steps n in

γABACAM
α (=σ(γUCONfinite

preA)) ∗−→
ψABACAM

α (=σ(ψ
UCONfinite

preA))
γ

ABACAM
α

1 .

Theorem 12. σUCONfinite
preA is a state matching reduction.

Proof. Lemma 5 shows that σUCONfinite
preA satisfies assertion 1 of Definition 1 and lemma 6 shows that

σUCONfinite
preA satisfies assertion 2 of Definition 1. Thereby σUCONfinite

preA is a state matching reduction.

84

Theorem 13. ABACAM
α and UCONfinite

preA are equivalent in expressive power

Proof. Theorem 11 proves that there exists a state matching reduction from ABACAM
α to UCONfinite

preA

and Theorem 12 proves that there exists a state matching reduction from UCONfinite
preA to ABACAM

α .

Thereby ABACAM
α and UCONfinite

preA are equivalent in expressive power.

Theorem 14. Safety of ABACAM
α is decidable.

Proof. Safety of UCONfinite
preA is decidable [107]. Theorem 13 proves that ABACAM

α is equivalent

in to UCONfinite
preA in expressive power. So safety of ABACAM

α is also decidable.

4.3 A Safety Undecidable ABACα Enhancement

4.3.1 Extension of ABACα beyond decidability

ABACAM
α is a UCONfinite

preA equivalent extension of ABACα which is still decidable. To analyze the

decidability boundary we furhter extend ABACAM
α to get an undecidable model. In this section we

allow infinite domain entity attribute in ABACAM
α and we name the resulting model ABACMI

α .

Safety Analysis of ABACMI
α

Here we provide a detail construction of a general Turing Machine with one dimensional single

tape and show that the safety problem of ABACMI
α can be reduced to the well known undecidable

problem of whether a Turing machine would reach to its accept state starting from an initial state

and finally prove that the safety problem of ABACMI
α is undecidable.

4.3.2 Turing Machine

A general Turing machine with one dimensional single tape [96]M is a 6 tuple:{Q,Σ,δ,q0, qaccept,

qreject }, where:

• Q is a finite set of states,

• Σ is a finite set, alphabet with blank

85

• δ : Q× Σ −→ Q× Σ× {L,R} is the transition function,

• q0, qaccept, qreject ∈ Q are the start state, accept state, and reject state, respectively, where

qaccept 6= qreject

The movement of the head in the tape in described as below:

• δ(q, x) = (p,y,L) in state q the tape head searching for the cell containing x and the head write

y on that cell moves one cell to the left on the tape and the new state should be named as

p. If the tape head is at the left end no movement will occur. Left transition can be of two

types:

1. Left transition when head pointing to the left end as it is a one way tape no creation

will occur resulting this transition. Only cell content and state will change

2. Left transition when head not pointing to the leftend, modifies the current cell, and

move the head to immediate left cell and put a new state value for that cell.

• δ(q, x) = (p,y,R) same as above only moves right.

Right transition can be of two types:

1. Right transition when head pointing to the right end new cell should be created to move

the head right.

2. Right transition when head not pointing to the right end modifies the current cell, and

move the head to immediate right cell and put a new state value for that cell.

4.3.3 Configuration of Turing Machine with ABACMI
α

We construct an ABACMI
α system that simulate Turing Machine M defined above. Our con-

struction follows the same technique provided in [140] for construction of Turing Machine with

UCONpreA. Table 4.20 gives the configuration of basic sets, functions and policies to configure

the construction. There are 4 subject attributes: {state, cell, right, left} and no user or object

attributes for this construction. The value of attribute state for a subject is either null or the state

86

ofM if its head is positioned on this cell, the value of cell is the content in the cell that the head is

scanning. right and left are the entity attributes where the value is the identity of another subject

representing the right side cell or left side cell of the concerned subject. For the subject represent-

ing the rightmost cell of the tape right is null and for the subject representing the leftmost cell in

the tape the value of attribute left would be null. Initial state of the system contains a single user

(u) and a single subject (s1) and the attribute value assignment for the subject is defined below:

• U = {u}

• S = {s1}

• O = {}

• state(s1)= q0

• cell(s1) = blank

• right(s1) = null

• left(s1) = null

Configuration of Movement:

The movement of the head in the tape is configured with ABACMI
α operations. The policy config-

uration is shown in Table 4.20. Here is the example of how

• Left Movement δ(q, x) = (p,y,L):

– Head not pointing to the left end cell: policy needs to check that head is not pointing

to the leftmost cell, that means to check state(s1) = q, cell(s1) = x and left(s1)!=null.

It also needs to check s2 positioned on immediate left of s1 which means to check

left(s1) = s2. Then it simulates the movement using the subject attribute modifica-

tion operation ModifySubjectAttbySubject(s1, s2, 〈 null, y, right(s1), left(s1) 〉, 〈 p,

cell(s2), right(s2), left(s2) 〉).

87

Table 4.20: Turing Machine (M) with ABACMI
α

UA = {}, SA= {state, cell, left, right}, OA = {}
attType(state) = attType (cell) = attType(left) = attType(right) = atomic
Range (state) = Q, Range (cell) = Γ , Range (left) = Range (right)= S
P = Q ∪ {leftMove, rightMove, create}
Authorization Policy:
Authorizationp(u, s) ≡ false
Authorizationp(u, s, savt) ≡ false
Subject Creation Policy:
ConstrSubCreatebyUser(u, s, savt) ≡ false
/* right movement δ(q, x) = (p,y,R)*, head in rightmost cell*/
ConstrSubCreatebySub(s1, s2, savt1, savt2) ≡ (right(s1) = null ∧ state(s1)= q ∧ cell(s1) = x ∧ right′(s1)
= s2 ∧ state(s1)= null ∧ cell(s1) = y ∧
right′(s2) = null ∧ state(s2)= p ∧ cell(s2) = blank)
∨
...
Subject Attribute Modification Policy:
ConstrSubModbyUser(u, s, uavt, savt) ≡ false
ConstrSubModbySub(s1, s2, savt1, savt2) ≡
/* right movement δ(q, x) = (p,y,R)*, head not in rightmost cell*/
(right(s1)= s2 ∧ state(s1) = q ∧ cell(s1) = x ∧
left(s2) = s1 ∧ state′(s1) = null ∧ state′(s2) = p∧ cell′(s1) = y)
∨
...
∨
/*left movement δ(q, x) = (p,y,L), head not in leftmost cell*/
(left(s1)= s2 ∧ state(s1) = q ∧ cell(s1) = x ∧
right(s2) = s1 ∧ state′(s1) = null ∧ state′(s2) = p∧ cell′(s1) = y)
∨
...
∨
/*left movement δ(q, x) = (p,y,L), head in leftmost cell*/
(left(s1)= null ∧ state(s1) = q ∧ cell(s1) = x ∧
state′(s1) = null ∧ state′(s1) = p ∧ cell′(s1) = y)
∨
...
∨
Subject Deletion Policy:
ConstrSubDelbyUser(u, s) ≡ false
ConstrSubDelbySub(u, s, savt) ≡ false
Object Creation Policy:
ConstrObjCreatebySub(s, o, oavt) ≡ false
Object Attribute Modification Policy
ConstrObjModAttrbySub(s, o, oavt) ≡ false

88

(a) Left Movement Simulation of Turing Machine with
ABACMI

α

(b) Left Movement Simulation of Turing Machine with
ABACMI

α

Figure 4.5: Simulation of Turing Machine Movement with ABACMI
α

– Head pointing to the right end cell: policy needs to check that head is pointing to

the leftmost cell, that means to check state(s1) = q, cell(s1) = x and left(s1)=null.

simulate the movement using the subject attribute modification operation ModifySub-

jectAttbySubject (s1, s1, 〈 p, y, right(s1), left(s1) 〉, 〈 p, y, right(s1), left(s1) 〉)

• Right Movement δ(q, x) = (p,y,R):

– Head not pointing to the right end cell: policy needs to check that head is not pointing to

the rightmost cell, that means to check state(s1) = q, cell(s1) = x and right(s1)!=null.It

also needs to check s2 positioned on immediate right of s1 which means to check

right(s1) = s2. Then it simulates the movement using the subject attribute modifi-

cation operation ModifySubjectAttbySubject(s1, s2, 〈 null, y, right(s1), left(s1) 〉, 〈

p, cell(s2), right(s2), left(s2) 〉).

89

– Head pointing to the right end cell: policy needs to check that head is pointing to the

rightmost cell, that means to check state(s1) = q, cell(s1) = x and right(s1)=null. Then

it simulates the movement using the subject creation operation CreateSubjectbySubject(s1,

s2, 〈 null, y, right(s1), left(s1) 〉, 〈 p, blank, null, s1 〉).

Fig. 4.5 shows examples of right and left movement simulation with ABACMI
α in different scenar-

ios. 1)Fig. 4.5(a)i. shows the left movement simulation with ABACMI
α when head is not pointing

to the leftmost cell, 2)Fig. 4.5(a)ii. shows the left movement simulation with ABACMI
α when head

is pointing to the leftmost cell, 3)Fig. 4.5(b)i. shows the right movement simulation with ABACMI
α

when head is not pointing to the rightmost cell and 4)Fig. 4.5(b)ii. shows the left movement simu-

lation with ABACMI
α when head is pointing to the leftmost cell.

In a particular state of ABACMI
α system, only one of the 2 operations (Modify Subject attribute(

left movement and for right movement if the head is not on the rightmost cell) or Create subject

(right movement if the head is on the rightmost cell))is authorized according to the policy defined

above. To distinguish between different condition of attribute modification the policy also checks

the position of the head and direction of movement. So actually in any state one of the 4 operations

:1) modify subject attribute for left movement when head is not pointing to the leftmost cell , 2)

modify subject attribute for left movement when head is pointing to the leftmost cell, 3) modify

subject attribute for right movement when head is not pointing to the rightmost cell and 4) create

subject for right movement when head is pointing to the rightmost cell, since the state attribute

is nonnull only for one subject. Each operation assigns a non-null value to a subject‘s state, and

sets another one to null. The left attribute is only null for leftmost cell and right attribute is only

null for rightmost cell. Therefore, this ABACMI
α system with the above policy configuration can

simulate the operations ofM.

4.3.4 Safety and Expressive Power

Theorem 15. Safety of ABACMI
α is undecidable.

Proof. (Proof Sketch): For a Turing machine, it is undecidable to check if the state qaccept can be

90

reached from the initial state. Therefore, with the scheme of ABACMI
α , it is undecidable whether

the state attribute of a subject can have the value qaccept. This completes our undecidability proof.

Theorem 16. ABACMI
α is more expressive than UCONpreA and ABACAM

α

Proof. Proof Sketch: By definition ABACMI
α allows infinite domain entity attribute on top of all

ABACAM
α features. On the other hand UCONpreA and ABACAM

α only supports finite domain

attributes. It is trivial to proof that ABACMI
α is more expressive than ABACAM

α and UCONpreA.

91

Chapter 5: OBJECT-TO-OBJECT RELATIONSHIP BASED ACCESS

CONTROL

This chapter proposes a novel relationship based access control model using object-to-object rela-

tionships. It also describes a proof-of-concept implementation of this model for relationship based

resource sharing in multicloud environment for Openstack object storage Swift.

5.1 OOReBAC Model

In the OSN context, ReBAC typically expresses authorization policy in terms of interpersonal

relationship between users. OSN-inspired ReBAC models primarily focus on user-to-user rela-

tionships, although some have also considered user-to-resource and resource-to-resource relation-

ships. An OSN has very specific type of resources (photos, comments, notes etc.) which are

closely related to users, so it is natural to consider resource relationships in OSNs as occurring

through users. However user-independent resource-to-resource (or object-to-object) relationships

have been around for decades in information systems. For instance, object-oriented systems main-

tain inheritance, composition and association relationships among objects, version control systems

use derived-from relationships between different versions, and digital content management sys-

tems use similar relationships between different media files. To our knowledge no existing ReBAC

model considers user-independent generic relationships between objects, as a useful means to ex-

press authorization policies. In this chapter we propose a novel Object-to-Object ReBAC model

(OOReBAC) which uses object relationships for controlling access to objects. We build a proof-

of-concept implementation of OOReBAC using the open source OpenStack cloud platform and

specifically its Swift object storage service.

5.1.1 Object-to-Object Relationship-Based Access Control Model Characteristics

In this subsection we discuss the general characteristics of an object-to-object relationship model

for access control. To our knowledge this is a first step towards this direction. Hence we will

92

Figure 5.1: Object-to-Object Relationship Based Access Control.

keep our model simple, raising the question as to what are the minimum requirements to realize

such a model. A typical access request in any access control model arises when a user (or subject)

tries to perform an action on a resource or object. So a set of users, a set of objects and a set of

actions are mandatory components for any access control model. Our main focus is on express-

ing authorization policy considering object relationships, so the model obviously needs a set of

possible (binary) relationship types and a data structure (preferably a relationship graph) to store

relationships between objects. To keep the model definition simple we will consider only one type

of symmetric relationship.

We need a special direct access from a user to object which can be maintained by a system func-

tion or access control list (ACL), starting from where additional related objects can be accessed.

We propose to limit, in an object specific and action specific manner, the number of relationship

links (or hopcount) that can be traversed to access a related object from a given starting point. For

example if the system specifies the relationship level of a particular object is 0 for write and 1 for

read that means the object is not allowed to be accessed through relationship chain for write, how-

ever it allows 1 level relationship chain for read. A system function would specify the relationship

level consideration for authorization of a particular object for a particular action.

Figure 5.1 shows how the model relationship and access would work. The system has two users

u1 and u2, and 3 objects o1, o2, o3. The relationships are {{o1,o2}, {o2, o3}}. The system function

ACL takes an object as input and returns a list of users. Here ACL(o1) = {u1}, ACL(o2) = {} and

93

Figure 5.2: Policy Level Example.

Figure 5.3: OOReBAC Model.

ACL(o3) = {u2}. When user u1 tries to access o1 he can directly do that without using relationships.

When u1 tries to access o2 or o3 the access control system needs to consider relationship between

{o1, o2} and {{o1, o2}, {o2,o3}} respectively.

Figure 5.2 shows the policy level specification of objects. Here ACL(o1) = {u1}, ACL(o2) =

{}, ACL(o3) = {}, and ACL(o4) = {}. There are two actions in the system, a1 and a2. We have the

following values of policy level as listed in Figure 5.2.

policyLevel(a1,o1) = 2, policyLevel(a2,o1) = 0

policyLevel(a1,o2) = 1, policyLevel(a2,o2) = 0

policyLevel(a1,o3) = 3, policyLevel(a2,o3) = 2

policyLevel(a1,o4) = 2, policyLevel(a2,o4) = 0

When u1 tries to do an action a1 or a2 on o1 the access request would be granted as u1 is in ACL

94

Table 5.1: OOReBAC Model

• U is a set of users

• O is a set of objects

• R ⊆ {z | z ⊂ O ∧ | z | = 2}

• G=〈O,R〉 is an undirected relationship graph with vertices O and edges R

• A is a set of actions

• Pi(o1) = { o2 | there exists a simple path of length p in graph G from o1 to o2}

• policyLevel: O × A→ N

• ACL: O→ 2U is the access control list for each object.

• There is a single policy configuration point.
Authorization Policy:
for each action a ∈ A, Authza(u:U,o:O) is a boolean function which returns true or false where u
and o are formal parameters.

• Authorization Policy Language:
Each action “a" has a single authorization policy Authza(u:U,o:O) specified using the following
language.
φ := u ∈ PATHi
PATHi := ACL(P0(o)) ∪ . . . ∪ ACL(Pi(o)) where i = min(| O | - 1, policyLevel(a,o))
where for any set X, ACL(X) =

⋃
x∈X ACL(x)

of o1. When u1 tries to do action a1 on o2 the access would be granted even though u1 is not in

o2’s ACL, since o2 allows upto 1 level of relationship chaining for authorizing action a1 and there

is a 1 level relationship of o2 with o1 as well as u1 is in o1’s ACL. When u1 tries to do a2 on o2 the

authorization would be denied as u1 is not in o2’s ACL and o2 allows 0 level relationship chaining

for action a2. When u1 tries to do a1 or a2 on o3 both of the actions would be granted. On the other

hand when u1 tries to do a1 or a2 on o4 both the actions will be denied.

5.1.2 OOReBAC: Model Definition

In this section we define a model OOReBAC which considers object to object relationships in

authorization policy. The model components are as follows: U is a set of users. A user is a human

being who performs action on objects. O is a set of objects. Objects are resources in the system

which need to be protected. R is a set of symmetric relationships between objects. G = 〈 O,

95

R 〉 is the relationship graph where objects are nodes and relationship between objects are edges.

There is a system function ACL which takes an object as input and returns a set of users as output.

There is another system function policyLevel which takes an object and an action as input and

returns a natural number indicating the relationship level that object would allow for authorization

of that particular action. A is a set of actions. Each action a ∈ A has a single authorization policy

Authza(u:U, o:O) which takes u and o as inputs and returns true or false. Here u and o are formal

parameters. The authorization policy is a boolean function which considers object relationships,

ACL and policyLevel. If Authza (u,o) returns true then u is authorized to do action a on object o.

On the other hand if Authza(u,o) returns false then u is not authorized to do action a on o.

Figure 5.3 shows the model components. Table 5.1 shows the formal representation of the

model definition and the language for authorization policy. OOReBAC is an operational model.

Create/delete users or objects, add/update relationships between objects, configure/update ACL or

policy levels are administrative operations and out of scope of OOReBAC model. These would be

specified in an administrative model, of which there could be many possibilities.

An instantiation of authorization policy for OOReBAC is given below.

• A = {read, write}

• Authzread(u:U,o:O) ≡ u ∈ PpolicyLevel(read,o)

• Authzwrite(u:U,o:O) ≡ u ∈ PpolicyLevel(write,o)

An example configuration of OOReBAC and an instantiation of OOReBAC policy is given

below.

• U = {u1, u2, u3}

• O = { o1, o2, o3, o4}

• R = {{o1, o2}, {o2, o3}, {o3, o4}}

• ACL(o1) = {u1}

ACL(o2) = {u3}

96

Figure 5.4: An Example of OOReBAC State I1.

ACL(o3) = {u2}

ACL(o4) = {u3}

• policyLevel(read, o1) = 2

policyLevel(write, o1) = 0

policyLevel(read, o2) = 2

policyLevel(write,o2) = 1

policyLevel(read,o3) = 0

policyLevel(write,o3) = 0

policyLevel(read,o4) = 2

policyLevel(write,o4) = 1

Figure 5.4 shows an example state I1 of this system. The following are some actions that

different users try in state I1 and their outcome.

• read(u1,o3), write(u1,o3) are denied

• read(u2, o1) is allowed, write(u2, o1) is denied

• read(u1,o4, write(u1,o4) are denied

5.1.3 OOReBAC:Applications

Application of OOReBAC model is restricted to systems where a single symmetric relationship

is used, e.g., document co-citation, document clustering, or related medical record. Consider an

97

Figure 5.5: Object Relationship in Medical Record.

example of a patient’s health records in different specialities shown in Figure 5.5. Here a patient

went to his primary care physician with certain symptoms such as chest pain. The primary care

physician created a record of his symptoms and medications he was taking at that time and referred

him to a gastroenterologist. The gastroenterologist created a record of his symptoms and investiga-

tions and based upon the results referred him to a cardiologist. The cardiologist then referred him

to an endocrinologist who also referred him to an ophthalmologist and a nephrologist. In every

stage of his treatment a new document is created considering the speciality of the doctor treating

him, and a relationship between consecutive documents is established. The doctor who creates a

particular document has a direct access to that document. Every time a specific doctor treats the

patient, he needs to look at his medical history and current treatments by other specialists using

the relationship between the records. Figure 5.5 shows the treatment scenario of the patient. For

example, if the nephrologist needs to see the records of the gastroenterologist for that patient, he

can use the relationship between records to do so.

Consider the policy that every specialist is able to write only on a document for which he is

assigned in the document’s ACL. Reading a document is allowed through the document relation-

ships. To specify this policy in our OOReBAC model we need to first express the OOReBAC

98

instantiation of the scenario as follows.

• U = { upp, ugs, ucd, uop, ued, unp }

• O = { mrpp, mrgs, mrcd, mrop, mred, mrnp }

• R = {{mrpp, mrgs}, {mrgs, mrcd}, {mrcd, mred}, {mrop, mred},{mrnp, mred}}}

• ACL(mrpp) = {upp},

ACL(mrgs) = {ugs},

ACL(mrcd) = {ucd},

ACL(mrop) = {uop},

ACL(mred) = {ued},

ACL(mrnp) = {unp}

• Action ={read, write}

• policyLevel(read,mrpp)=∞, policyLevel(write,mrpp)=0,

policyLevel(read,mrgs)=∞, policyLevel(write,mrgs)=0,

policyLevel(read,mrcd)=∞, policyLevel(write,mrcd)=0,

policyLevel(read,mrop)=∞, policyLevel(write,mrop)=0,

policyLevel(read,mred)=∞, policyLevel(write,mred)=0,

policyLevel(read,mrnp)=∞, policyLevel(write,mrnp)=0

• Authorization policy:

Authzread(u,o) ≡ u ∈ PpolicyLevel(read,o)

Authzwrite(u,o) ≡ u ∈ PpolicyLevel(write,o)

Some sample operations and their outcomes are given below.

1. read(unp, mrpp) : authorized

2. read(ucd, mrnp) : authorized

99

3. write(unp, mrnp) : authorized

4. write(unp, mrpp) : denied

5. write(unp, mrpp) : denied

5.2 Implementation of OOReBAC in Openstack Object Storage Swift

Using object-to-object relationship brings in a new dimension when we consider relationship be-

tween objects which can originate in different environments. Organizations often use multicloud

environment for independent and parallel work, including reducing reliance on any single vendor,

increasing flexibility through choice, and mitigating against disasters, etc. This is similar to the use

of best-of-breed applications from multiple developers on a personal computer, rather than the de-

faults offered by the operating system vendor. Using multiple infrastructure providers for different

workloads, deploying a single workload load balanced across multiple providers (active-active), or

deploying a single workload on one provider, with a backup on another (active-passive) [6], are

common multicloud applications. Sharing resources between multiple clouds IaaS is very impor-

tant in today’s multicloud world. Using object-to-object relationship can be one way to share our

objects between different clouds.

For a proof-of-concept implementation we use homogeneous multicloud using the open source

IaaS OpenStack platform [9] for all clouds in the system. In particular we build upon the Open-

Stack object storage Swift. In this section we provide a brief description of the implementation of

OOReBAC. We first review OpenStack object storage Swift and its original authorization module.

Our proposed model for Swift authorization can be named as relationship based resource shar-

ing for OpenStack object storage Swift. It enables the following features beyond those natively

provided in Swift.

• Object specific ACL.

• Allow users to access objects through relationship along with ACL.

100

Figure 5.6: MultiCloud Implementation of OOReBAC Model.

Algorithm 5.1 authorize(u,f,G)
if u in ACL(f) then

return true
else

policyLevel = policyLevel(f)
for depth limited search upto min(policyLevel, |O| - 1) do

if if any of the file’s ACL contains u then
return true

return false

• Allow users outside projects/accounts to access an object through relationship.

• Overall this proposed model would be able to work in multicloud environment.

To enable these features we are proposing an authorization service for Swift access control.

5.2.1 Proposed Authorization Service for Swift

An authorization service for Swift would take care of the authorization of objects. We would

store all the container level ACL and relationship between files in authorization service. The

collaboration between different clouds is done through federation. Once federation is established

every file can be accessed by two types of user, local user and federated user. Swift operations

101

Table 5.2: Functional Specification.
Functions Conditions Updates

Administrative Actions
CreateRelationship admin ∈ role(u) ∧ RelationshipSet(filename1) ∪= {filename2}
(u,filename1,filename2) cloud(filename1) = cloud(u) RelationshipSet(filename2) ∪= {filename1}

∧ filename1 6∈ RelationshipSet(filename2)
∧ filename2 6∈ RelationshipSet(filename1)

DeleteRelationship admin ∈ role(u) ∧ RelationshipSet(filename1) \= {filename2}
(u,filename1,filename2) cloud(filename1) = cloud(u) RelationshipSet(filename2) \= {filename1}

filename1 ∈ RelationshipSet(filename2)
∧ filename2 ∈ RelationshipSet(filename1)

IncludeAUserinACL Role(u) ∈ Admin∧ ACLSet(filename1) ∪= {username1}
(u,filename1,username1) cloud(filename1) = cloud(u)∧

username1 6∈ ACLSet(filename1)
ExcludeAUserFromACL Role(u) ∈ Admin∧ ACLSet(filename1) \= {username1}
(u,filename1,username1) cloud(filename1) = cloud(u)∧

username1 ∈ ACLSet(filename2)
ConfigurePolicyLevel Role(u)∈ Admin ∧ PolicyLevel(filename)= num
(u,filename,num) cloud(filename1) = cloud(u)

num ≤ | O |
Operational Command

download u∈ U allow user u to download file filename1

(u,filename1) ∧ authorize(u,filename1,G)

are of two types: Administrative Operations and User Operations. Creating ACL entry for

a particular object, updating ACL, creating relationship between objects, updating relationship,

configuring policy levels and updating policy levels are Administrative Operations.

The proposed OOReBAC theoretical model is defined for operational authorization and does

not include an administrative model. Therefore, for our implementation we have defined a simple

administrative model for Swift authorization service. This administrative model allows an admin

user from any of the collaborating clouds to configure and update relationships, ACLs and policy

levels. To configure and update relationship admin user and at least one file for which relationship

is being configured should be from same cloud. To configure and update ACL and policyLevel

admin user and the corresponding file should be from same cloud. Admin user can directly issue a

RESTAPI command from Swift to the authorization service database to create relationships, update

relationships, create an ACL, update an ACL, create policy level and update policy level. In Swift

User Operations are uploading a file and downloading a file. Only the creator of the container

can upload a file. In our implementation the upload operation is kept as it is. The authorization of

downloading a file is done through authorization service.

Figure 5.6 shows the implementation detail of the model. In this figure we are considering two

102

Table 5.3: Relationship.
SourceFileName TargetFileList
f1@cloud1:account1:container1 {f2@cloud1:account1:container1,

f3@cloud2:account1:container1}
.

Table 5.4: ACL.
Filename UserList
f1@cloud1:account1:container1 {u1@cloud1:account1,

u2@cloud1:account1}
.

clouds c1 and c2. First we need to establish federation between these two clouds. The authorization

service would contain all the ACL information of every file, along with relationship information

and policy level information. To configure our OOReBAC model for this implementation platform

user identification will comprise of cloud and current account information along with user name.

Files or objects also need to contain filename along with cloud name, account name and container

name. Each user is identified as username@cloudname:accountname, while each file is identified

as filename@cloudname:accountname:containername.

When a download request comes from a user for a local file, the user’s request triggers a

RESTAPI call to the authorization service. The authorization service looks up the ACL table to

determine if this user has direct access to the file. If so it returns true, else it goes to the policyLevel

table to find out how many levels of relationship the file allows. Then it looks up to the policy level

depth in relationship table whether any of the file up to that depth has an ACL authorizing the

accessing user. If it finds any it returns true, otherwise it returns false.

Algorithm 5.1 shows the pseudocode of the algorithm in the authorization service to evaluate

access authorization. Here we have used depth limited search upto a fix depth considering the

policy level of a particular object for a particular action. Depth limited search searches upto a fix

limited depth for all possible paths. Depth first search is a special case of depth limited search

where limit is∞. The overall time complexity of the algorithm is O(| O | |O|), although with small

policy limits the performance will be considerably better.

Table 5.2 specifies the administrative commands and operational commands of the imple-

103

Table 5.5: Policy Level
FileName Policy Level
f3@cloud1:account2:container3 (download,2)
.

mented model for the authorization service. Administrative function CreateRelationship creates

relationship between two files by a cloud admin. It takes a user and two filename as input. It

checks whether the cloud admin and the first file are from same cloud and that no relationship

exists between the two files. Administrative function DeleteRelationship deletes an existing re-

lationship between two files, IncludeAUserinACL includes a user in the ACL list of a file by the

cloud admin. ExludeAUserinACL excludes a user in the ACL list of a file by the cloud admin,

and ConfigurePolicyLevel configures the policy level of a file by the cloud admin.The only user

operation is download. It takes a user and a file as input, and checks whether the user is an existing

user and using the authorize algorithm from authorization service it returns true or false.

Tables 5.3, 5.4, and 5.5 shows the structure of the Relationship, ACL and policyLevel table

in the authorization service. In Relationship table the graph is stored in adjacency list format. In

ACL table ACL information is stored as file specific userlist and in Policy Level table file specific

policylevel is stored.

104

Chapter 6: CONCLUSION

The following sections summarize contributions of this dissertation and discuss some future re-

search directions that can be further investigated.

6.1 Summary of Contributions

This dissertation makes fundamental contributions towards consensus study on characteristics and

comparison of Attribute and Relationship Based Access control models.

First it develops a rigorous comparison between ABAC and ReBAC. We do this by classify-

ing ABAC and ReBAC models based on salient aspects that are relevant to their comparison and

proposes two semi-formal families of models for both ReBAC and ABAC and compare them. The

main purpose of these classifications is to enable comparison. The classifications are not intended

to be a complete characterization of ABAC models or ReBAC models. They are only a partial

classification but sufficient to draw out the essential relationships between ABAC and ReBAC.

Second it analyzes the safety of the existing ABACα model and proposes two enhanced ver-

sions of ABACα so as to analyze the decidability boundary and comparative expressive power for

the extensions. One keeps the same safety decidability result while other extension has undecid-

able safety. The first extension is shown to be equivalent in expressive power to the existing safety

decidable UCONfinite
preA model.

Third it defines a novel form of ReBAC model (OOReBAC) considering object-to-object re-

lationship independent of users to control access of resources and an implementation of it for

multicloud resource sharing in OpenStack object storage Swift.

6.2 Future Work

There are several opportunities to extend the comparative study and analysis of Attribute and Re-

lationship Based Access Control Models presented in this dissertation.

The relationship between ABAC and ReBAC can be define more concretely through config-

105

uration of more sophisticated ReBAC we have these days. More significantly metrics beyond

theoretical equivalence need to be brought into consideration to better understand the relative ad-

vantages and disadvantages of these two approaches. Performance is one such metric but others

such as maintainability, robustness, and agility, also need to be studied. The families of model we

have presented are semi formal. To study formal comparison we need to consider formal represen-

tation of sophisticated ReBAC models with multiple asymmetric relationships between different

entities (such as users, resources etc.), policy individualization, incoming and outgoing actions and

then application of this framework in the general computing system.

The OOReBAC model presented here is motivated by object-to-object relationship in object-

oriented systems and version control systems while it is more influenced by ReBAC in social con-

text. It only considers one type of symmetric relationship whereas object-oriented systems contain

different types of asymmetric relationship (inheritance, composition, and association). Version

control system considers one type of relationship “derived from" however the graph is a directed

acyclic graph (DAG) and the relationship is asymmetric. It would be interesting future work to

develop a model evolved from OOReBAC, which can instantiate access control for an already ex-

isting object relationship application such as object-oriented systems and version control systems.

106

BIBLIOGRAPHY

[1] Alloy Language and Tool. http://alloy.mit.edu/alloy/. [Online; Accessed:

10/5/2017].

[2] Digital Asset Management. http://www.adobepress.com/articles/

article.asp?p=2129363. [Online; Accessed: 10/05/2017].

[3] Digital Library. https://en.wikiversity.org/wiki/Digital_Libraries/

Recommender_systems#Recommender_Systems. [Online; Accessed:

10/05/2017].

[4] Facebook Help Community Question. https://www.facebook.com/help/

community/question/?id=10151800679568529. [Online; Accessed:

10/10/2017].

[5] Function Composition. https://en.wikipedia.org/wiki/Function_

composition. [Online; Accessed: 10/05/2017].

[6] Multi-Cloud. https://en.wikipedia.org/wiki/Multicloud. [Online; Ac-

cessed: 10/5/2017].

[7] Neo4j. http://www.neo4j.org/. [Online; Accessed: 10/05/2017].

[8] Nested Function. http://mathworld.wolfram.com/NestedFunction.html.

[Online; Accessed: 10/05/2017].

[9] Openstack. http://www.openstack.org/. [Online, Accessed: 10/05/2017].

[10] Panama Paper Leaks. http://info.neo4j.com/05262016---ICIJ-and-

Panama-Papers-OnDemand_LP-Video.html?aliId=38013278. [Online; Ac-

cessed: 10/05/2017].

107

http://alloy.mit.edu/alloy/
http://www.adobepress.com/articles/article.asp?p=2129363
http://www.adobepress.com/articles/article.asp?p=2129363
https://en.wikiversity.org/wiki/Digital_Libraries/Recommender_systems#Recommender_Systems
https://en.wikiversity.org/wiki/Digital_Libraries/Recommender_systems#Recommender_Systems
https://www.facebook.com/help/community/question/?id=10151800679568529
https://www.facebook.com/help/community/question/?id=10151800679568529
https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Multicloud
 http://www.neo4j.org/
http://mathworld.wolfram.com/NestedFunction.html
http://www.openstack.org/
http://info.neo4j.com/05262016---ICIJ-and-Panama-Papers-OnDemand_LP-Video.html?aliId=38013278
http://info.neo4j.com/05262016---ICIJ-and-Panama-Papers-OnDemand_LP-Video.html?aliId=38013278

[11] Singlevalue multivalue. https://msdn.microsoft.com/en-us/library/

aa746488(v=vs.85).aspx. [Online; Accessed: 10/4/2017].

[12] Structured Attribute. https://docops.ca.com/ca-identity-manager/12-

6-5/EN/configuring/user-console-design/configuring-profile-

tabs-and-screens/field-styles/structured-attribute-display.

[Online; Accessed: 10/4/2017].

[13] Swift. http://docs.openstack.org/developer/swift/. [Online; Accessed:

10/05/2017].

[14] Swift API. http://docs.openstack.org/developer/swift/api/object_

api_v1_overview.html. [Online; Accessed: 10/05/2017].

[15] Swift Authorization. http://docs.openstack.org/developer/swift/

overview_auth.html. [Online; Accessed: 10/05/2017].

[16] Version Control. http://web.mit.edu/6.005/www/sp16/classes/05-

version-control/. [Online; Accessed: 10/5/2017].

[17] number-of-monthly-active-facebook-users-worldwide. https://zephoria.com/

top-15-valuable-facebook-statistics/, 2017. [Online; Accessed:

10/05/2017].

[18] Ali E. Abdallah and Etienne J. Khayat. A formal model for parameterized role-based access

control. In Formal Aspects in Security and Trust, 2004.

[19] Tahmina Ahmed, Farhan Patwa, and Ravi Sandhu. Object-to-object relationship based ac-

cess control: model and multi-cloud demonstration. In IEEE Conference on Information

Reuse and Integration (IRI), pages 297–304. IEEE, 2016.

[20] Tahmina Ahmed and Ravi Sandhu. Safety of ABACα is decidable. In International Con-

ference on Network and System Security (NSS). Springer, 2017.

108

https://msdn.microsoft.com/en-us/library/aa746488(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa746488(v=vs.85).aspx
https://docops.ca.com/ca-identity-manager/12-6-5/EN/configuring/user-console-design/configuring-profile-tabs-and-screens/field-styles/structured-attribute-display
https://docops.ca.com/ca-identity-manager/12-6-5/EN/configuring/user-console-design/configuring-profile-tabs-and-screens/field-styles/structured-attribute-display
https://docops.ca.com/ca-identity-manager/12-6-5/EN/configuring/user-console-design/configuring-profile-tabs-and-screens/field-styles/structured-attribute-display
http://docs.openstack.org/developer/swift/
http://docs.openstack.org/developer/swift/api/object_api_v1_overview.html
http://docs.openstack.org/developer/swift/api/object_api_v1_overview.html
http://docs.openstack.org/developer/swift/overview_auth.html
http://docs.openstack.org/developer/swift/overview_auth.html
 http://web.mit.edu/6.005/www/sp16/classes/05-version-control/
 http://web.mit.edu/6.005/www/sp16/classes/05-version-control/
https://zephoria.com/top-15-valuable-facebook-statistics/
https://zephoria.com/top-15-valuable-facebook-statistics/

[21] Tahmina Ahmed, Ravi Sandhu, and Jaehong Park. Classifying and comparing attribute-

based and relationship-based access control. In ACM Conference on Data and Application

Security and Privacy (CODASPY), pages 59–70. ACM, 2017.

[22] Evangelos Aktoudianakis, Jason Crampton, Scott Schneider, Helen Treharne, and Adrian

Waller. Policy templates for relationship-based access control. In Eleventh Annual Inter-

national Conference on Privacy, Security and Trust (PST), pages 221–228. IEEE, 2013.

[23] Mohammad A. Al-Kahtani and Ravi S. Sandhu. A model for attribute-based user-role as-

signment. In Annual Computer Security Applications Conference, 2002.

[24] Asma Alshehri and Ravi Sandhu. On the relationship between finite domain ABAM and

PreUCONA. In International Conference on Network and System Security (NSS), pages

333–346. Springer, 2016.

[25] Paul Ammann, Ravi S Sandhu, and Richard Lipton. The expressive power of multi-parent

creation in monotonic access control models. Journal of Computer Security, 4(2-3):149–

165, 1996.

[26] Eric Andonoff, Gilles Hubert, Annig Le Parc, and Gilles Zurfluh. Modelling inheritance,

composition and relationship links between objects, object versions and class versions. In

Advanced Information Systems Engineering, pages 96–111. Springer, 1995.

[27] Malcolm P Atkinson, Francois Bancilhon, David J DeWitt, Klaus R Dittrich, David Maier,

and Stanley B Zdonik. The object-oriented database system manifesto. In DOOD, vol-

ume 89, pages 40–57, 1989.

[28] John Barkley, Konstantin Beznosov, and Jinny Uppal. Supporting relationships in access

control using role based access control. In Proceedings of the Fourth ACM Workshop on

Role-based Access Control, pages 55–65. ACM, 1999.

[29] Michael Barr and Charles Wells. Category theory for computing science. In Prentice Hall,

page 6, 1998.

109

[30] Fabrício Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virgílio Almeida. Character-

izing user behavior in online social networks. In ACM SIGCOMM Internet Measurement

Conference (IMC), pages 49–62. ACM, 2009.

[31] Phillipa Bennett, Indrakshi Ray, and Robert France. Analysis of a relationship based access

control model. In Proceedings of the Eighth International C* Conference on Computer

Science & Software Engineering, pages 1–8. ACM, 2015.

[32] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical framework for

reasoning about access control models. Proceedings of 6th ACM Symposium on Access

Control Models and Technologies (SACMAT), 2001.

[33] Elisa Bertino, Pierangela Samarati, and Sushil Jajodia. An extended authorization model

for relational databases. IEEE Transactions on Knowledge and Data Engineering (TKDE),

9(1):85–101, 1997.

[34] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-

tion. In IEEE Symposium on Security and Privacy (S & P), pages 321–334. IEEE, 2007.

[35] Prosunjit Biswas, Farhan Patwa, and Ravi Sandhu. Content Level Access Control for Open-

Stack Swift Storage. In Proceedings of the 5th ACM Conference on Data and Application

Security and Privacy (CODASPY), pages 123–126. ACM, 2015.

[36] Piero A. Bonatti and P. Samarati. Regulating service access and information release on the

web. In ACM Conference on Computer and Communications Security (CCS), 2000.

[37] Piero A. Bonatti and P. Samarati. A uniform framework for regulating service access and

information release on the web. Journal of Computer Security, 2002.

[38] Joël Brunet. Modeling the world with semantic objects. In IFIP - WG 8.1 Conf. on ”The

Object Oriented Approach in Information Systems”, page 1, 1991.

110

[39] Glenn Bruns, Philip WL Fong, Ida Siahaan, and Michael Huth. Relationship-based access

control: its expression and enforcement through hybrid logic. In ACM Conference on Data

and Application Security and Privacy (CODASPY), pages 117–124, 2012.

[40] Edward Caprin, Yan Zhang, and Khaled M. Khan. Social access control language (So-

cACL). In Proceedings of the 6th International Conference on Security of Information and

Networks, pages 261–265. ACM, 2013.

[41] Barbara Carminati, Elena Ferrari, Raymond Heatherly, Murat Kantarcioglu, and Bhavani

Thuraisingham. A semantic web based framework for social network access control. In Pro-

ceedings of the 14th ACM Symposium on Access Control Models and Technologies (SAC-

MAT), pages 177–186. ACM, 2009.

[42] Barbara Carminati, Elena Ferrari, and Andrea Perego. Rule-based access control for social

networks. In OTM Confederated International Conferences: On the Move to Meaningful

Internet Systems, pages 1734–1744. Springer, 2006.

[43] Barbara Carminati, Elena Ferrari, and Andrea Perego. Enforcing access control in web-

based social networks. ACM Transactions on Information and System Security (TISSEC),

13(1):6, 2009.

[44] Barbara Carminati, Elena Ferrari, and Andrea Perego. A decentralized security framework

for web-based social networks. Pervasive Information Security and Privacy Developments:

Trends and Advancements: Trends and Advancements, page 356, 2010.

[45] D. Chadwick. Understanding X.500: The Directory. Chapman & Hall, Ltd., 1994.

[46] David W. Chadwick, Alexander Otenko, and Edward Ball. Role-based access control with

X.509 attribute certificates. IEEE Internet Computing, 2003.

[47] Ajay Chander, John C Mitchell, and Drew Dean. A state-transition model of trust manage-

ment and access control. In csfw, volume 1, pages 27–43, 2001.

111

[48] Melissa Chase. Multi-authority attribute based encryption. In Theory of Cryptography

Conference, pages 515–534. Springer, 2007.

[49] Peter Pin-Shan Chen. The entity-relationship model toward a unified view of data. ACM

Transactions on Database Systems (TODS), 1(1):9–36, 1976.

[50] Yuan Cheng, Khalid Bijon, and Ravi Sandhu. Extended ReBAC administrative models with

cascading revocation and provenance support. In Proceedings of the 21st ACM Symposium

on Access Control Models and Technologies (SACMAT), pages 161–170. ACM, 2016.

[51] Yuan Cheng, Jaehong Park, and Ravi Sandhu. Relationship-based access control for online

social networks: Beyond user-to-user relationships. In International Conference on Privacy,

Security, Risk and Trust (PASSAT), pages 646–655. IEEE, 2012.

[52] Yuan Cheng, Jaehong Park, and Ravi Sandhu. A user-to-user relationship-based access con-

trol model for online social networks. In IFIP Annual Conference on Data and Applications

Security and Privacy, pages 8–24. Springer, 2012.

[53] Yuan Cheng, Jaehong Park, and Ravi Sandhu. Attribute-aware relationship-based access

control for online social networks. In IFIP Annual Conference on Data and Applications

Security and Privacy(DBSEC), pages 292–306. Springer, 2014.

[54] Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dey, Mustaque

Ahamad, and Gregory D. Abowd. Securing context-aware applications using environment

roles. In Proceedings of 6th ACM Symposium on Access Control Models and Technologies

(SACMAT), 2001.

[55] Jason Crampton and James Sellwood. Caching and auditing in the RPPM model. In In-

ternational Workshop on Security and Trust Management (STM), pages 49–64. Springer,

2014.

112

[56] Jason Crampton and James Sellwood. Path conditions and principal matching: a new ap-

proach to access control. In Proceedings of the 19th ACM Symposium on Access Control

Models and Technologies(SACMAT), pages 187–198. ACM, 2014.

[57] Jason Crampton and James Sellwood. ARPPM: Administration in the RPPM model. In

Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy

(CODASPY), pages 219–230. ACM, 2016.

[58] Jason Crampton and James Sellwood. Inter-ReBAC: inter-operation of relationship-based

access control model instances. In IFIP Annual Conference on Data and Applications Se-

curity and Privacy (DBSEC), pages 96–105. Springer, 2016.

[59] E. Damiani, S.D.C. di Vimercati, and P. Samarati. New paradigms for access control in open

environments. International Symposium on Signal Processing and Information Technology

(ISSPIT), 2005.

[60] Gillian Dobbie, Xiaoying Wu, Tok Wang Ling, and Mong Li Lee. Ora-ss: An object-

relationship-attribute model for semi-structured data. TR21/00, Department of Computer

Science, National University of Singapore, 2000.

[61] Mark Evered. Supporting parameterised roles with object-based access control. In HICSS,

2003.

[62] Ronald Fagin. On an authorization mechanism. ACM Transactions on Database Systems

(TODS), 3(3):310–319, 1978.

[63] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy Chan-

dramouli. Proposed nist standard for role-based access control. ACM Transactions on

Information and System Security (TISSEC), 4(3):224–274, 2001.

[64] M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and Y. Elovici. Link prediction in

social networks using computationally efficient topological features. In IEEE Third Inter-

national Confernece on Social Computing (SocialCom), pages 73–80. IEEE, 2011.

113

[65] M. Fire, R. Tenenboim, R. Puzis, O. Lesser, L. Rokach, and Y. Elovici. Computationally

efficient link prediction in variety of social networks. ACM Transactions on Intelligent

Systems and Technology (TIST), 5(1), 2013.

[66] Jeffrey Fischer, Daniel Marino, Rupak Majumdar, and Todd D. Millstein. Fine-grained

access control with object-sensitive roles. In European Conference on Object Oriented

Programming (ECOOP), 2009.

[67] Philip WL Fong. Relationship-based access control: protection model and policy language.

In Proceedings of the first ACM conference on Data and Application Security and Pri-

vacy(CODASPY), pages 191–202. ACM, 2011.

[68] Philip WL Fong, Mohd Anwar, and Zhen Zhao. A privacy preservation model for facebook-

style social network systems. In European Symposium of Research in Computer Security

(ESORICS), pages 303–320. Springer, 2009.

[69] Philip WL Fong and Ida Siahaan. Relationship-based access control policies and their policy

languages. In Proceedings of the 16th ACM Symposium on Access Control Models and

Technologies(SACMAT), pages 51–60. ACM, 2011.

[70] L. Fuchs, G. Pernul, and R. Sandhu. Roles in information security: A survey and classifica-

tion of the research area. Computers and Security, 2011.

[71] Jean Gallier. Discrete mathematics. In PWS Publishing, page 118. Springer, 2011.

[72] Carrie Gates. Access control requirements for web 2.0 security and privacy. IEEE Web,

2(0), 2007.

[73] Mei Ge and Sylvia L. Osborn. A design for parameterized roles. In Data and Application

Security and Privacy (DBSEC), 2004.

[74] Luigi Giuri and Pietro Iglio. Role templates for content-based access control. In ACM

Workshop on RBAC, 1997.

114

[75] Patricia P Griffiths and Bradford W Wade. An authorization mechanism for a relational

database system. ACM Transactions on Database Systems (TODS), 1(3):242–255, 1976.

[76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating

systems. Communications of the ACM(CACM), 19(8):461–471, 1976.

[77] Vincent C. Hu, David Ferrariolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin, Robert

Miller, and Scarfone Karen. Guide to attribute based access control (ABAC) definitions and

considerations. NIST Special Publication, 800(162), 2014.

[78] John Hughes and Eve Maler. Security Assertion Markup Language (SAML), v2.0 technical

overview. OASIS SSTC Working Draft sstc-saml-tech-overview-2.0-draft-08, pages 29–38,

2005.

[79] Mohammad Jafari and Mohammad Fathian. Management advantages of object classification

in role-based access control (RBAC). In Asian computing science conference on Advances

in computer science: computer and network security(ASIAN), 2007.

[80] Sushil Jajodia, P. Samarati, Maria Luisa Sapino, and V. S. Subrahmanian. Flexible support

for multiple access control policies. ACM Transactions on Database Systems (TODS), 2001.

[81] Xin Jin. Attribute-Based Access Control Models And Implementation In Cloud Infrastruc-

ture As A Service. PhD dissertation, University of Texas at San Antonio, 2014.

[82] Xin Jin, Ram Krishnan, and Ravi Sandhu. A unified attribute-based access control model

covering DAC, MAC and RBAC. In IFIP Annual Conference on Data and Applications

Security and Privacy (DBSEC), pages 41–55. Springer, 2012.

[83] Anas Abou El Kalam, Salem Benferhat, Alexandre Miège, Rania El Baida, Frédéric Cup-

pens, Claire Saurel, Philippe Balbiani, Yves Deswarte, and Gilles Trouessin. Organization

based access control. In POLICY, 2003.

115

[84] S. Kandala, R. Sandhu, and V. Bhamidipati. An attribute based framework for risk-adaptive

access control models. In International Conference on Availability, Reliability and Security

(ARES), 2011.

[85] Won Kim, Elisa Bertino, and Jorge F. Garza. Composite objects revisited. In Proceedings of

the 1989 ACM SIGMOD International Conference on Management of Data, pages 337–347.

ACM, 1989.

[86] Jan Kolter, Rolf Schillinger, and Günther Pernul. A privacy-enhanced attribute-based access

control system. In IFIP Annual Conference on Data and Applications Security and Privacy

(DBSEC), pages 129–143. Springer, 2007.

[87] D. Richard Kuhn, Edward J. Coyne, and Timothy R. Weil. Adding attributes to role-based

access control. IEEE Computer, 2010.

[88] Arun Kumar, Neeran M. Karnik, and Girish Chafle. Context sensitivity in role-based access

control. Operating Systems Review, 2002.

[89] Bo Lang, Ian T. Foster, Frank Siebenlist, Rachana Ananthakrishnan, and Timothy Free-

man. A flexible attribute based access control method for grid computing. Journal of Grid

Computing, 2009.

[90] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data, 2014.

[91] Ming Li, Shucheng Yu, Yao Zheng, Kui Ren, and Wenjing Lou. Scalable and secure shar-

ing of personal health records in cloud computing using attribute-based encryption. IEEE

Transactions on Parallel and Distributed Systems (TPDS), 24(1):131–143, 2013.

[92] Ninghui Li, John C Mitchell, and William H Winsborough. Design of a role-based trust-

management framework. In IEEE Symposium on Security and Privacy (S&P), pages 114–

130. IEEE, 2002.

116

http://snap.stanford.edu/data

[93] Ninghui Li and William H Winsborough. Beyond proof-of-compliance: Safety and avail-

ability analysis in trust management. In IEEE Symposium on Security and Privacy (S&P),

pages 123–139. IEEE, 2003.

[94] Alex X. Liu, Fei Chen, JeeHyun Hwang, and Tao Xie. Xengine: a fast and scalable XACML

policy evaluation engine. In SIGMETRICS, 2008.

[95] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia

Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, et al. The open provenance model

core specification (v1. 1). Future Generation Computer Systems, 27(6):743–756, 2011.

[96] M.Sipser. Introduction to the Theory of Computation. PWS Publishing, 1997.

[97] Dang Nguyen, Jaehong Park, and Ravi Sandhu. A provenance-based access control model

for dynamic separation of duties. In Eleventh Annual International Conference on Privacy,

Security and Trust (PST), pages 247–256. IEEE, 2013.

[98] OASIS. Extensible Access Control Markup Language (XACML), v2.0 (2005). 2005.

[99] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based access con-

trol to enforce mandatory and discretionary access control policies. ACM Transactions on

Information and System Security (TISSEC), 3(2):85–106, 2000.

[100] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-

monotonic access structures. In ACM Conference on Computer and Communications Secu-

rity (CCS), pages 195–203. ACM, 2007.

[101] Jun Pang and Yang Zhang. A new access control scheme for facebook-style social networks.

Computers & Security, 54:44–59, 2015.

[102] Jaehong Park, Dang Nguyen, and Ravi Sandhu. A provenance-based access control model.

In International Conference on Privacy, Security and Trust (PST), pages 137–144. IEEE,

2012.

117

[103] Jaehong Park and Ravi Sandhu. The UCONabc usage control model. ACM Transactions on

Information System Security (TISSEC), 2004.

[104] Torsten Priebe, Wolfgang Dobmeier, and Nora Kamprath. Supporting attribute-based access

control with ontologies. In International Conference on Availability, Reliability and Security

(ARES), 2006.

[105] Navid Pustchi and Ravi Sandhu. MT-ABAC: A multi-tenant attribute-based access control

model with tenant trust. In International Conference on Network and System Security (NSS),

pages 206–220. Springer, 2015.

[106] Bo Qin, Hua Deng, Qianhong Wu, Josep Domingo-Ferrer, David Naccache, and Yunya

Zhou. Flexible attribute-based encryption applicable to secure e-healthcare records. Inter-

national Journal of Information Security, 14(6):499–511, 2015.

[107] PV Rajkumar and Ravi Sandhu. Safety decidability for pre-authorization usage control with

finite attribute domains. IEEE Transactions on Dependable and Secure Computing (TDSC),

13(5):582–590, 2016.

[108] Prathima Rao, Dan Lin, Elisa Bertino, Ninghui Li, and Jorge Lobo. An algebra for fine-

grained integration of XACML policies. In Proceedings of 14th ACM Symposium on Access

Control Models and Technologies (SACMAT), 2009.

[109] Syed Zain R Rizvi and Philip WL Fong. Interoperability of relationship-and role-based

access control. In Proceedings of the Sixth ACM Conference on Data and Application

Security and Privacy (CODASPY), pages 231–242. ACM, 2016.

[110] Syed Zain R Rizvi, Philip WL Fong, Jason Crampton, and James Sellwood. Relationship-

based access control for an open-source medical records system. In Proceedings of the 20th

ACM Symposium on Access Control Models and Technologies (SACMAT), pages 113–124.

ACM, 2015.

118

[111] Marko A Rodriguez and Peter Neubauer. Constructions from dots and lines. Bulletin of the

American Society for Information Science and Technology, 36(6):35–41, 2010.

[112] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques(EUROCRYPT),

pages 457–473. Springer, 2005.

[113] Ravi Sandhu. Engineering authority and trust in cyberspace: The OM-AM and RBAC way.

In ACM Workshop on Role-Based Access Control, pages 111–119. ACM, 2000.

[114] Ravi Sandhu. The PEI framework for application-centric security. In International Work-

shop on Security and Communication Networks (IWSCN), pages 1–6. IEEE, 2009.

[115] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97 model for role-

based administration of roles. Transactions on Information and System Security (TISSEC),

1999.

[116] Ravi Sandhu and Fang Chen. The multilevel relational (MLR) data model. ACM Transac-

tions on Information System Security (TISSEC), 1(1):93–132, 1998.

[117] Ravi Sandhu and Qamar Munawer. How to do discretionary access control using roles. In

Proceedings of the third ACM workshop on Role-based access control, pages 47–54. ACM,

1998.

[118] Ravi Sandhu, Kumar Ranganathan, and Xinwen Zhang. Secure information sharing enabled

by trusted computing and PEI models. In ACM Symposium on Information, Computer and

Communications Security (ASIACCS), pages 2–12. ACM, 2006.

[119] Ravi S. Sandhu. Expressive power of the schematic protection model. Journal of Computer

Security, 1(1):59–98, 1992.

[120] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9–19, 1993.

119

[121] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based

access control models. IEEE Computer, 1996.

[122] Ravi S Sandhu and Srinivas Ganta. On testing for absence of rights in access control models.

In Computer Security Foundations Workshop VI, 1993. Proceedings, pages 109–118. IEEE,

1993.

[123] Ravi S. Sandhu and P. Samarati. Access control: Principles and practice. Comunication

Magazine, IEEE, 1994.

[124] Christian Schläger, Manuel Sojer, Björn Muschall, and Günther Pernul. Attribute-based au-

thentication and authorisation infrastructures for e-commerce providers. In EC-Web, 2006.

[125] Haibo Shen. A semantic-aware attribute-based access control model for web services. In In-

ternational Conference on Algorithms and Architectures for Parallel Processing (ICA3PP),

pages 693–703. Springer, 2009.

[126] Henry Small. Co-citation in the scientific literature: A new measure of the relationship be-

tween two documents. Journal of the American Society for information Science, 24(4):265–

269, 1973.

[127] Scott D Stoller. An administrative model for relationship-based access control. In IFIP

Annual Conference on Data and Applications Security and Privacy (DBSEC), pages 53–68.

Springer, 2015.

[128] Zhong Su, Qiang Yang, Hongjiang Zhang, Xiaowei Xu, and Yuhen Hu. Correlation-based

document clustering using web logs. In Proceedings of the 34th Annual Hawaii Interna-

tional Conference on System Sciences (HICSS), pages 7–pp. IEEE, 2001.

[129] Bo Tang, Qi Li, and Ravi Sandhu. A multi-tenant RBAC model for collaborative cloud

services. In International Conference on Privacy, Security and Trust (PST), pages 229–238.

IEEE, 2013.

120

[130] Bo Tang and Ravi Sandhu. Extending Openstack access control with domain trust. In

International Conference on Network and System Security (NSS), pages 54–69. Springer,

2014.

[131] Mahesh V Tripunitara and Ninghui Li. A theory for comparing the expressive power of

access control models. Journal of Computer Security, 15(2):231–272, 2007.

[132] Mahesh V Tripunitara and Ninghui Li. The foundational work of Harrison-Ruzzo-Ullman

revisited. IEEE Transactions on Dependable and Secure Computing (TDSC), 10(1):28–39,

2013.

[133] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. A logic-based framework for at-

tribute based access control. In In 2nd ACM Workshop on FMSE, 2004.

[134] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna PN Puttaswamy, and Ben Y Zhao.

User interactions in social networks and their implications. In Proceedings of the 4th ACM

European Conference on Computer systems (EuroSys), pages 205–218. ACM, 2009.

[135] Jianming Yong, Elisa Bertino, Mark Toleman, and Dave Roberts. Extended RBAC with role

attributes. In 10th Pacific Asia Conference on Information System (PACIS), 2006.

[136] Ting Yu, Xiaosong Ma, and Marianne Winslett. Prunes: an efficient and complete strategy

for automated trust negotiation over the internet. In ACM Conference on Computer and

Communications Security (CCS), 2000.

[137] Ting Yu, Marianne Winslett, and Kent E. Seamons. Interoperable strategies in automated

trust negotiation. In ACM Conference on Computer and Communications Security (CCS),

2001.

[138] Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured credentials and

sensitive policies through interoperable strategies for automated trust negotiation. ACM

Transactions on Information System Security (TISSEC), 2003.

121

[139] Eric Yuan and Jin Tong. Attributed based access control (ABAC) for web services. In

Proceedings of the IEEE International Conference on Web Services(ICWS), pages 561–569.

IEEE Computer Society, 2005.

[140] Xinwen Zhang, Ravi Sandhu, and Francesco Parisi-Presicce. Safety analysis of usage con-

trol authorization models. In ACM Symposium on Information, Computer and Communica-

tions Security (ASIACCS), volume 6, pages 243–254, 2006.

122

VITA

Tahmina Ahmed was born and grew up in Dhaka, Bangladesh. Following her graduation from

Shaheed Bir Uttam Lt. Anwar Girls’ College and Viqarunnisa Noon School and College, Tahmina

received her Bachelor of Science in Engineering degree with a major in Computer Science and

Engineering from Bangladesh University of Engineering and Technology (BUET), Bangladesh

in 2004. After completion of her BSc. Eng. she worked in software and telecommunication

industry for 6 years. In 2011, she joined University of Texas at San Antonio (UTSA) to pursue

her doctoral degree. She joined the Institute for Cyber Security at UTSA and started working with

Dr. Ravi Sandhu since 2012. Her research interests include security and privacy in cyber space.

In particular, her focus is on Attribute and Relationship Based Access Control and application of

them in the cloud platform.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Motivation
	Problem Statement
	Summary of Contribution
	Organization of the Dissertation

	Chapter 2: Background
	The ABAC Model
	The ABAC Formal Model (Review)

	The UCONpreAfinite Model
	The UCONpreAfinite Model (Review)

	ReBAC Models
	ReBAC for Online Social Networks
	ReBAC Beyond Online Social Environment

	Expressive Power Comparison Framework
	The Openstack Cloud Platform
	Swift Storage Structure

	Chapter 3: Comparison of ReBAC and ABAC
	Attribute Types
	ReBAC Classification
	ABAC Classification
	Expressing MultiLevel Relationships With Attributes
	Comparison: ABAC vs. ReBAC
	Comparison on Dynamics
	Comparable Structural Models for ReBAC and ABAC
	Performance Comparison
	Choices Of Models

	Chapter 4: Safety and Expressive Power of ABAC and its Enhancements
	Safety of ABAC
	Reduction from ABAC to UCONpreAfinite
	Safety of ABAC

	Safety and Expressive Power of a UCONpreAfinite Equivalent ABAC Enhancement
	ABACAM Model
	Reductions
	Safety and Expressive Power

	A Safety Undecidable ABAC Enhancement
	Extension of ABAC beyond decidability
	Turing Machine
	Configuration of Turing Machine with ABACMI
	Safety and Expressive Power

	Chapter 5: Object-to-Object Relationship Based Access Control
	OOReBAC Model
	Object-to-Object Relationship-Based Access Control Model Characteristics
	OOReBAC: Model Definition
	OOReBAC:Applications

	Implementation of OOReBAC in Openstack Object Storage Swift
	Proposed Authorization Service for Swift

	Chapter 6: Conclusion
	Summary of Contributions
	Future Work

	Bibliography
	Vita

